\(\Delta ABC\)nhọn nội tiếp (o), điểm M bất kì thuộc cung nh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

A B C H E F

a) Sử dụng hệ thức lượng trong các tam giác vuông ABH; ACH và ABC

\(AB.BE=BH^2;AC.CF=CH^2\)

\(AB^2=BH.BC;AC^2=CH.BC\)

=> \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)

<=> \(\frac{AB^4}{AC^4}=\frac{BE.AB}{CF.AC}=\frac{BH^2}{CH^2}\)

<=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)

<=> \(\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)

<=> \(\frac{BH}{CH}=\frac{BH}{CH}\) đúng

Vậy ta có điều phải chứng minh là đúng

b) 

Ta có: \(AH^2=BH.CH\)

=> \(AH^4=BH^2.CH^2=BE.AB.CF.AC=BE.CF.AB.AC=BE.CF.AH.BC\)

=> \(AH^3=BC.BE.CF\)

c)   

Xét tam giác vuông BEH và tam giác vuông HFC

có: ^EBH =^FHC ( cùng phụ góc FCH)
=> Tam giác BEH đồng dạng tam giác HFC

=> \(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE.FC=EH.FH\)

=> \(AH^3=BC.HE.HF\)

22 tháng 10 2017

A B C D H K M E F I S O

a) CMR: Tứ giác DEIF là hình thoi:

Xét \(\Delta\)ADM: ^ADM=900, I là trung điểm AM => DI=AI=IM (1)

Xét \(\Delta\)AEM: ^AEM=900, I là trung điểm AM => EI=AI=IM (2)

Từ (1) và (2) => DI=EI (*)

Ta có: DI=AI (cmt) => \(\Delta\)AID cân tại I => ^IAD=^IDA hay ^IAD+^IDA=2.^IAD (3)

Tường tự: ^IAE=^IEA => ^IAE+^IEA=2.^IAE (4)

Nhận thấy: ^DIM là góc ngoài \(\Delta\)AID => ^DIM=^IAD+^IDA, thay (3) vào ta đc:

^DIM=2.^IAD (5)

^EIM là góc ngoài \(\Delta\)AIE = >^EIM=^IAE+^IEA, thay (4) vào ta đc:

^EIM=2.^IAE (6)

Từ (5) và (6) => ^DIM+^EIM=2.^IAD+2.^IAE => ^DIE=2.(^IAD+^IAE)=2.^DAE.

Mà ^DAE=^BAC/2=600/2=300 => ^DIE=2.300=600 (**)

Từ (*) và (**) => \(\Delta\)DIE là tam giác đều.

Chứng minh tương tự ta cũng có \(\Delta\)DIF đều => Tứ giác DEIF là hình thoi (đpcm).

b) Đề sai, mình không thấy M,H,K thẳng hàng

Sửa: CMR MH,DI.EF đồng quy.

Gọi S là trung điểm của AH. O là giao điểm của DI và EF (3*)

Xét \(\Delta\)AMH: I là trung điểm AM, S là trung điểm AH

=> IS là đường trung bình \(\Delta\)AMH => IS//MH (7)

Do tứ giác DEIF là hình thoi (cmt) => DI và EF cắt nhau tại trg điểm mỗi đường

=> O là trung điểm của DI và EF.

Xét \(\Delta\)SID: O là trung điểm DI, H là trung điểm SD (H là trực tâm và cũng là trọng tâm \(\Delta\)ABC)

=> OH là đường trung bình \(\Delta\)SID => OH//IS (8)

Từ (7) và (8) => M,O,H thẳng hàng (4*)

Từ (3*) và (4*) => DI,EF,MH đồng quy (đpcm).

22 tháng 10 2017

Mình ghi nhầm, ID cắt EF tại k