Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O B A M N C E F
a) Do C là giao điểm của BN với đường tròn nên C thuộc đường tròn.
Lại có AB là đường kính nên \(\widehat{ACB}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
Vậy nên tam giác ABC vuông tại C.
b) Do M thuộc đường tròn nên \(\widehat{AMB}=90^o\Rightarrow EM\perp AN\)
Ta cũng có \(NC\perp AE\)
Xét tam giác ANE có EM, NC là các đường cao nên B là trực tâm.
Vậy thì \(AB\perp NE\)
c) Xét tứ giác AFNE có : MA = MN; MF = ME nên AFNE là hình bình hành (Dấu hiệu nhận biết)
\(\Rightarrow\) FN // AE
Ta chứng minh BA = BN và \(BN\perp FN\)
Thật vậy, xét tam giác ABN có MA = MN, \(BM\perp AN\) nên ABN là tam giác cân.
Vậy BA = BN
Ta có \(NC\perp AE\Rightarrow NC\perp FN\)
Suy ra NF là tiếp tuyến của đường tròn (B; BA).
a: Xét (O) có
ΔCDB nội tiếp
BC là đường kính
Do đó: ΔCDB vuông tại D
hay CD vuông góc với AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
hay BE vuông góc với AC
b: Xét ΔABC có
BE là đường cao
CD là đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
Suy ra: AH vuông góc với BC
Ta có ; \(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
=> D là điểm chính giữa cung BC
=> DO vuông góc với BC tại trung điểm H của BC
lại có: \(\Delta BDM~\Delta BCF\Rightarrow\frac{BD}{BC}=\frac{DM}{CF}\Rightarrow\frac{BD}{2BH}=\frac{\frac{1}{2}DA}{CF}\Rightarrow\frac{BD}{BH}=\frac{DA}{CF}\)
Mà \(\widehat{D_1}=\widehat{C_2}\)( bẹn chứng minh ở phần a nhé)
\(\Rightarrow\Delta BDA~\Delta HCF\left(c.g.c\right)\Rightarrow\widehat{F_1}=\widehat{A_1}\)(2 góc tương ứng)
Mà A1=A2(gt) và A2=E1(cùng chắn 1 cung DC).
F1=E1=> tam giác EFHC nội tiếp
a)Ta có:AD v/góc BC =>BC là trung trực của AD(đ/lý đkính và dây cung)
=> tam giác DBA cân tại B=>BDA=DAB(t/c)
Lại có EF//AD(cùng v/góc HC)
=>BEF=BDA=BFE=DAB
=> tam giác BEF cân tại B
b)Ta có: tam giác BEF cân tại B có BH là đường cao
=> BH cũng là trung tuyến
=>HE=HF
Mặt khác:FAE=90o (kề bù với BAC)
Xét tam giác EAF vuông tại A có AH là trung tuyến
=> HA=HF=HE
=>tam giác HAF cân
c)\(\Delta\) FHB có HFB+HBF=90o (FHB=90o)(3)
Mà \(\left\{{}\begin{matrix}\text{HAF=HFA(HAF cân)(4)}\\HBF=ABO\left(đ.đ\right)\left(1\right)\end{matrix}\right.\)
Lại có:OB=OA=R
=>\(\Delta\)OBA cân tại O =>OBA=OAB(2)
Từ (1)(2)=>HBF=BAO(5)
Từ (3)(4)(5)=>HFB+HBF=BAO+HAF=90o=HAO
=>HA là tiếp tuyến của (O)(đpcm)