Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △BHA và △HBD có:
BHA = HBD (= 90o)
BH: chung
HA = BD (gt)
\(\Rightarrow\)△BHA = △HBD (2cgv) (*)
b) Từ (*), ta có: ABH = DHB (2 góc tương ứng)
Mà hai góc ở vị trí so le trong
\(\Rightarrow\)AB // DH
c) Ta có: BAH + HAC = 90o
\(\Rightarrow\)HAC = 90o - 35o = 55o
Xét △HAC vuông tại H
\(\Rightarrow\)HAC + HCA = 90o (tính chất hai góc phụ nhau trong △ vuông)
\(\Rightarrow\)HCA = 90o - 55o = 35o
\(\Rightarrow\)ACB = 35o
Vậy ACB = 35o
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:
\(BH:\)cạnh chung
\(AH=DB\)(gt)
Suy ra \(\Delta AHB=\)\(\Delta DBH\left(2cgv\right)\)
b) Vì \(\Delta AHB=\)\(\Delta DBH\)(c/m ở câu a) nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên \(AB//DH\)
c) \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=35^0\)nên \(\widehat{ABH}=90^0-35^0=55^0\)
hay \(\widehat{ABC}=55^0\)
\(\Delta ABC\)vuông tại A có \(\widehat{ABC}=55^0\)nên \(\widehat{ACB}=90^0-55^0=35^0\)
Vậy \(\widehat{ACB}=35^0\)
a: Xét ΔAHB vuông tại H và ΔDBH vuông tại B có
BH chung
BA=HD
Do đó: ΔAHB=ΔDBH
b: Xét tứ giác AHDB có
AH//DB
AH=DB
Do đó: AHDB là hình bình hành
Suy ra: AB//DH
c: \(\widehat{ACB}=\widehat{BAH}=35^0\)
GT| \(\widehat{BAC}=90\text{°}\) \(AH\perp BC\)tại H Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH \(\widehat{BAH}=35\text{°}\) |
KL | AB // DH |
Xét \(\Delta AHB\&\Delta DBH\) ta có :
AH = BD ( hình vẽ )
BH cạnh chung
AB = HD ( gt )
=> \(\Delta AHB=\Delta DBH\)( c.c.c )
b) Ta có :
\(\Delta AHB=\Delta DBH\) ( cmt )
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT
=> AB // DH
a) Xét \(\Delta AHB\) và \(\Delta DBH\), ta có:
BD=AH (gt)
\(\widehat{DBH}=\widehat{BHA}\) (=\(90^0\))
BH chung
\(\Rightarrow\Delta AHB=\Delta DBH\) (c-g-c)
b) Vì \(AH\perp BH\) mà \(BD\perp BH\)\(\Rightarrow\)AB//HD (đpcm)
c) Xét \(\Delta BOD\) và \(\Delta HOA\), ta có:
\(\widehat{DBO}=\widehat{AOH}\) \(\left(=90^0\right)\)
BD=AH (gt)
\(\widehat{BOD}=\widehat{HOA}\) (đối đỉnh)
\(\Rightarrow\Delta BOD=\Delta HOA\) (g-c-g)
\(\Rightarrow BO=OH\) (2 cạnh tương ứng) (1)
mà \(O\in BH\) (2)
Từ (1),(2)\(\Rightarrow\)O là trung điểm của BH
d) (để suy nghĩ)
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a, xét tam giác AHB và tam giác DBH có : HB chung
góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)
AH = BD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
b, tam giác AHB = tam giác DBH (câu a)
=> góc DHB = góc HBA (đn) mà 2 góc này so le trong
=> HD // AB (đl_
c, câu này dễ tự tính được
a)
Xét tam giác AHB và tam giác DBH có:
AH = DB (gt)
AHB = DBH (= 900)
BH chung
=> Tam giác AHB = Tam giác DBH (c.g.c)
b)
DB _I_ BC (gt)
AH _I_ BC (gt)
=> DB // AH
c)
Tam giác HAB vuông tại H có:
HAB + HBA = 900
350 + HBA = 900
HBA = 900 - 350
HBA = 550
Tam giác ABC vuông tại A có:
ABC + ACB = 900
550 + ACB = 900
ACB = 900 - 550
ACB = 350