Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;
AH2+BH2=AB2
=>AH2=AB2-BH2=52-32
=>AH2=25-9=16
=>AH=+(-)4
mà AH>0 =>AH=4 cm
Lại có;
BH+HC=BC
=>HC=BC-BH=8-3
=>HC=5 cm
Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:
AC2=AH2+HC2
=>AC2=42+52=16+25
=>AC2=41
=>AC=+(-)√41
Mà AC >0 =>AC=√41cm
Vậy AH=4 cm; HC=5 cm ; AC= √41cm
![](https://rs.olm.vn/images/avt/0.png?1311)
3 10 5 A B C H 30 o
Xét \(\Delta AHC\) có :
\(\widehat{AHC}+\widehat{ACH}+\widehat{HAC}=180^{^O}\)(Tổng 3 góc của 1 tam giác)
=> \(90^{^O}+30^{^O}+\widehat{HAC}=180^o\)
=> \(120^o+\widehat{HAC}=180^o\)
=> \(\widehat{HAC}=180^o-120^o\)
=> \(\widehat{HAC}=60^o\)
Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :
\(AH^2=AB^2-BH^2\) (định lí PITAGO)
=> \(AH^2=5^2-3^2=16\)
=> \(AH=\sqrt{16}=4\left(cm\right)\)
Ta có : \(H\in BC\Rightarrow BC=BH+HC\)
\(\Rightarrow HC=10-3=7\left(cm\right)\)
Xét \(\Delta AHC\) vuông tại H (\(AH\perp BC\)) có :
\(AC^2=AH^2+HC^2\) (Định lí PITAGO)
=> \(AC^2=4^2+7^2=65\)
=> \(AC=\sqrt{65}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H D E
a) Xét \(\Delta ABC\) có :
AB = AC (gt)
=> \(\Delta ABC\) cân tại A
\(\Delta ABH,\Delta ACH\) có :
\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)
\(AB=AC\left(gt\right)\)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)
=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)
b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :
\(AH^2=AB^2-BH^2\) (Định lí PITAGO)
=> \(AH^2=5^2-4^2=9\)
=> \(AH=\sqrt{9}=3\left(cm\right)\)
c) Xét \(\Delta DBH,\Delta ECH\) có :
\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)
\(BH=CH\)(cm câu a)
\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)
=> \(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)
=> \(HD=HC\) (2 cạnh tương ứng)
=> \(\Delta HDE\) cân tại H.
![](https://rs.olm.vn/images/avt/0.png?1311)
( hình bn tự vẽ )
Giải
Xét ΔAHB và ΔAHC có
AH là cạnh chung
góc AHB = góc AHC =90o ( AH⊥BC )
AB=AC ( ΔABC cân tại A )
=> ΔAHB = ΔAHC (ch_cgv)
=> HB=HC ( 2 cạnh tương ứng )
Vậy HB=HC
b) Ta có HB = HC ( theo câu a)
=> H là trung điểm BC => HB=HC = 1/2 BC
MÀ BC = 8cm( gt) => HB=HC = 1/2 . 8=4 ( cm )
Xét ΔAHB vuông tại H
=> AB2 = HA2+HB2 ( định lý Pi-ta-go)
THay số ta có
52=AH2 + 42
=> AH2 = 52-42
=> AH2=9
=> AH = √9=3 ( AH>0)
Vậy AH=3cm
c)Do AH là tia phân giác của góc BAC
MÀ HD⊥AB , HE⊥AC
=> HD=HE ( tính chất )
=> ΔHDE cân tại H
Vậy ΔHDE cân tại H
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C 5 5 8 H D E
Cm: Ta có: AB = AC <=> t/giác ABC là t/giác cân tại A
<=> góc B = góc C
Xét t/giác ABH và t/giác ACH
có góc BHA = góc CHA = 900 (gt)
AB = AC = 5 cm (gt)
góc B = góc C (cmt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> BH = CH (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: BH = CH = BC/2 = 8/2 = 4 (cm)
Xét t/giác ABH vuông tại H (áp dụng định lí Pi - ta- go)
=> AB2 = AH2 + BH2
=> AH2 = 52 - 42 = 9 = 32
=> AH = 3 (cm)
c) Xét t/giác ADH và t/giác AEH
có góc ADH = góc AEH = 900(gt)
AH : chung
góc DAH = góc EAH (cmt)
=> t/giác ADH = t/giác AEH (ch - gn)
=> HD = HE (hai cạnh tương ứng)
=> t/giác HDE là t/giác cân tại H
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời : Bn tham khảo link này :
https://h.vn/hoi-dap/question/559410.html
( Vào thống kê hỏi đáp của mk sẽ thấy )
![](https://rs.olm.vn/images/avt/0.png?1311)
A C B H
Áp dụng định lý Pytago ta có:
\(AC^2=AH^2+HC^2=12^2+16^2=400\)
\(\Rightarrow AC=20\left(cm\right)\)
Và \(BH^2=AB^2-AH^2=13^2-12^2=25\)
\(\Rightarrow BH=5\left(cm\right)\Rightarrow BC=BH+HC=5+16=21\left(cm\right)\)
Vậy \(\hept{\begin{cases}AC=20\left(cm\right)\\BC=21\left(cm\right)\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nha.
a) Xét tam giác ABH và tam giác ACH
Ta có: Góc AHB = Góc AHC ( = 90 độ )
AB = AC ( Vì tam giác ABC cân )
Góc ABH = Góc ACH ( Vì tam giác ABC cân )
=> Tam giác ABH = Tam giác ACH ( ch-gn )
=> HB = HC ( hai cạnh tương ứng )
Góc BAH = Góc CAH ( Hai góc tương ứng 0
=> Đpcm
b) Vì HB = HC ( câu a )
Mà BC = HB + HC
=> HB = HC = BC / 2 = 8 / 2 = 4 cm
Xét tam giác ABH vuông tại H
=> AH2 + BH2 = AB2
Hay AH2 + 42 = 52
=> AH2 = 52 - 42
=> AH2 = 9
=> AH = 3
c) Xét tam giác AHD và tam giác AHE
Ta có: Góc ADH = Góc AEH ( = 90 độ )
AH là cạnh huyển chung
Góc BAH = Góc CAH ( câu a )
=> Tam giác AHD = Tam giác AHE ( ch-gn )
=> HD = HE ( Hai cạnh tương ứng )
=> Tam giác HDE cân tại H
=> Đpcm
Bạn tự vẽ hình nhé! Phần mềm trên này khó căn chuẩn
Vì \(AH\perp BC\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\Rightarrow AH^2+BH^2=AB^2\) ( ĐL Pytago )
Thay số : \(\Rightarrow AH^2+3^2=5^2\Leftrightarrow AH^2=5^2-3^2=25-9=16\Leftrightarrow AH=4\left(cm\right)\)
Có \(BH+HC=BC\Rightarrow HC=BC-BH=8-3=5\left(cm\right)\)
Vì \(\Delta AHC\) có \(\widehat{AHC}=90^0\Rightarrow AH^2+HC^2=AC^2\) ( ĐL Pytago )
\(\Rightarrow AC^2=4^2+5^2=16+25=41\Leftrightarrow AC=\sqrt{41}\left(cm\right)\)
A B C H
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\)
\(\Rightarrow AH=4\left(cm\right)\)
Ta có: \(BH+CH=BC\)\(\Rightarrow HC=BC-BH=8-3=5\)( cm )
Xét \(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow AC^2=AH^2+HC^2=4^2+5^2=16+25=40\)
\(\Rightarrow AC=\sqrt{40}=2\sqrt{10}\)( cm )