\(\Delta ABC,D\in AB,E\in AC\) sao cho \(AD=\dfrac{1}{4}AB,AE=\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Tự vẽ hình nhé Nữ hoàng sến súa là ta

Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK

Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC

Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC

Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:

+ Chung CE

\(\widehat{KEC}=\widehat{FCE}\)( so le trong )

\(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))

\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)

Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)

Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)


 

7 tháng 7 2018

Hình nè, nếu bạn không vẽ được:

Hình xấu thông cảm

6 tháng 10 2017

A B C D F E K

Trên EF lấy điểm K sao cho ED = EK.

Khi đó ta thấy ngay ADCK là hình bình hành (theo dấu hiệu nhận biết)

Vậy thì CK // AD và CK = AD.

Do \(AD=\frac{1}{4}AB\Rightarrow AD=\frac{1}{3}DB\Rightarrow\frac{CK}{DB}=\frac{1}{3}\)

Xét tam giác FDB có CK // DB nên theo định lý Talet ta có \(\frac{CK}{BD}=\frac{CF}{BF}=\frac{1}{3}\Rightarrow\frac{CF}{BC}=\frac{1}{2}\Rightarrow CF=\frac{1}{2}BC.\)

19 tháng 7 2018

Áp dụng định lí Menelaus :

\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1

Mà AE = CE, AD = 1/3BD

=> BF/CF = 3

=> CF = 1/2 BC