Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì tam giác ABC đều => Â = \(\widehat{B}\) =\(\widehat{C}\)
=> tam giác ADE = tam giác CFE vì D^= E^= 90 * ; A^ = C^ => DEA^ = EFC^ (1)
=. tam giác DEF cân tại E => EDF^ = EFD^ (2)
DAE^ + DEA^+ EDA^ = CFE^ + DFE^ + DFB^ = 180*
(1) và (2) => DFB^ = ADE^ = 90* => DF vuong góc FC
b) => tam giác DBF = tam giác FCE = tam giác EAD => DF= FE = DE => tam giác DEF đều
A B C D E F I 1 2
*Bài dài quá, mk tóm tắt cách làm rồi bạn diễn giải ra nha*
a) Để chứng minh \(\Delta ADB=\Delta ADC\), ta chứng minh theo trường hợp cạnh - góc - cạnh
- Ta thấy có AD là cạnh chung
- \(\widehat{A_1}=\widehat{A_2}\) do phân giác
- AB = AC do \(\Delta ABC\) cân
b) Để chứng minh \(\Delta AED=\Delta AFD\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông
- Dễ dàng chứng minh 2 tam giác này vuông lần lượt tại E, F
- AD là cạnh chung
- \(\widehat{A_1}=\widehat{A_2}\)
c) Để chứng minh \(\Delta BDE=\Delta CDF\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông
- Dễ thấy ED = DF do \(\Delta AED=\Delta AFD\)
- BD = DC
(do AD là phân giác của \(\Delta ABC\) mà \(\Delta ABC\) cân tại A nên AD cũng là trung tuyến. Suy ra D là trung điểm CD nên BD=DC)
d) Để chứng minh AD là trung trực BC, ta phải chứng minh D là trung điểm BC và AD vuông góc BC
- Đã có D là trung điểm BC do cmt
- AD vuông góc BC do AD là phân giác của \(\Delta ABC\) mà \(\Delta ABC\) cân tại A nên AD cũng là đường cao.
e) Để chứng minh \(I\in AD\) mà I là trung trực EF thì ta chứng minh AD là trung trực EF
Để chứng minh AD là trung trực EF, ta phải có AE = AF, ED = DF (cmt do \(\Delta AED=\Delta AFD\))
Bài 1:
A B C D E F
Tam giác ABC đều => AB = AC = BC
Mà D , F , E lần lượt là các trung điểm của AB ,BC , CA.
=> AD = AF = FC = CE = BE = BD. (1)
=> góc A = góc B = góc C = 60\(^o\)
=> Tam giác ADF đều vì AD = AF ( cmt) ; góc A = 60\(^o\). (2)
Tương tự, tam giác BDE đều vì BD = BE (cmt); góc B = 60\(^o\) (3)
Tam giác CFE đều vì góc C = 60\(^o\); CF = CE. (cmt).(4)
Từ (1), (2), (3) , (4) => DF = FE = DE.( ĐPCM)
Mình chỉ giải cko bạn 1 bài thôi nha , tại mình đang bận chút!!!!
Chúc bạn học tốt!!!
Hình vẽ:
A B C E F D
Giải:
a) Xét tam giác ABD và tam giác ACD, có:
\(AB=AC\) (Tam giác ABC cân tại A)
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A)
\(BD=CD\) ( D là trung điểm của BC)
\(\Leftrightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b) Ta có: \(\Delta ABD=\Delta ACD\) (câu a)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}\) (Hai cạnh tương ứng)
Lại có: \(\widehat{ADB}+\widehat{ADC}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
\(\Leftrightarrow AD\perp BC\)
c) Có D là trung điểm của BC
\(\Leftrightarrow BD=\dfrac{1}{2}BC=\dfrac{1}{2}.12=6\left(cm\right)\)
Lại có tam giác ABC cân tại A
\(\Leftrightarrow AC=AB=10\left(cm\right)\)
Áp dụng dịnh lý Pitago vào tam giác ABD, có:
\(AB^2=AD^2+BD^2\)
Hay \(10=AD^2+6^2\)
\(\Leftrightarrow AD^2=10^2-6^2=64\)
\(AD=\sqrt{64}=8\left(cm\right)\)
d) Xét tam giác BDE và tam giác CDF, có:
\(\widehat{BED}=\widehat{CFD}=90^0\)
\(BD=CD\) (D là trung điểm của BC)
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A) \(\Rightarrow\Delta BDE=\Delta CDF\left(ch-gn\right)\) \(\Rightarrow DE=DF\) (Hai cạnh tương ứng) \(\Rightarrow\Delta DEF\) cân tại D Vậy ...Giải:
a)Xét Δ ABD và Δ ACD có:
AD là cạnh chung
AB=AC (vì Δ ABC cân tại A)
BD=CD (vì D là trung điểm của BC)
Vậy: Δ ABD = Δ ACD (c.c.c)
b)Vì Δ ABD = Δ ACD (chứng minh trên)
nên: \(\widehat{ADB}=\widehat{ADC}\) (hai góc tương ứng)
mà: \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)
nên: \(\widehat{ADB}+\widehat{ADB}=180^0\)
\(2\widehat{ADB}=180^0\)
\(\widehat{ADB}=\dfrac{180^0}{2}\)
\(\widehat{ADB}=90^0\)
Do đó: AD⊥BC tại D
c)Ta có: BD=CD (vì D là trung điểm của BC)
Mà: BC=12cm (giả thiết)
lại có: BC=BD+CD
nên: \(BD=CD=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)
* Áp dụng định lí Pi-ta-go vào Δ ADC vuông tại D có:
\(AC^2=AD^2+CD^2\)
\(10^2=AD^2+6^2\)
\(100=AD^2+36\)
\(AD^2=100-36\)
\(AD^2=64\)
\(AD=\sqrt{64}\left(AD>0\right)\)
Vậy: AD=8(cm)
d)Xét Δ BED vuông tại E và Δ CFD cân tại F có:
\(\widehat{B}=\widehat{C}\) (vì Δ ABC cân tại A)
\(BD=CD\) (vì D là trung điểm của BC)
Vậy: Δ BED =Δ CFD ( cạnh huyền_góc nhọn)
\(\Rightarrow DE=DF\) (hai cạnh tương ứng)
Do đó: Δ DEF cân tại D
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a. Xét tam giác BAE và tam giác BHE có:
BA=BH
BE chung
góc ABE=HBE ( phân giác BE )
=> tam giác BAE = tam giác BHE (c.g.c)
=> góc BAE=BHE ( 2 góc tương ứng)
mà góc BAE= 90 độ
=> góc BHE=90 độ => EH ⊥BC .
b.tam giác BAE = tam giác BHE => BA=BH và AE=EH
=> BE là đường trung trực của AH
c.Xét tam giác AKE và tam giác HCE có:
góc AEK=HEC ( đối đỉnh)
AE=EH
góc EAK=EHC (= 90 độ)
=> tam giác AKE = tam giác HCE (g.c.g)
=> EK=EC
d.Có: BA=BH => tam giác BAH cân tại B
=> góc BHA= 180 độ - góc HBA / 2 (1)
Có: BC=BH+HC
BK=BA+AK
mà BH=BA
HC=AK ( do tam giác AKE = tam giác HCE )
=> BC=BK => tam giác BCK cân tại B
=> góc BCK=180 độ - góc HBA /2 (2)
Từ (1) (2) => góc BHA=BCK
mà 2 góc ở vị trí đồng vị
=> AH//CK
e. Xét tam giác BMC và tam giác BMK có:
BC=BK
CM=KM ( M là trung điểm của KC )
BM chung
=> tam giác BMC = tam giác BMK (c.c.c)
=> góc MBC=MBK => BM là tia phân giác của góc B
mà BE cũng là phân giác của góc B
=> ba điểm B, E, M thẳng hàng.
Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.
a,Chứng minh AB = AC.
b,Tính số đo góc CAO
c,Tam giác ABC là tam giác gì ? Vì sao ?
d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO
e,Tính số đo góc CBO?
g,Chứng minh AO là đường trung trực của BC?
Các bạn giúp mình với,huhu
Mình có hình cho câu a) thôi nha.
a) Xét 2 \(\Delta\) \(BEA\) và \(BEM\) có:
\(BA=BM\left(gt\right)\)
\(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
Cạnh BE chung
=> \(\Delta BEA=\Delta BEM\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta BEA=\Delta BEM.\)
=> \(EA=EM\) (2 cạnh tương ứng).
=> E thuộc đường trung trực của \(AM\) (1).
Vì \(BA=BM\left(gt\right)\)
=> B thuộc đường trung trực của \(AM\) (2).
Từ (1) và (2) => \(BE\) là đường trung trực của \(AM.\)
Ta có: \(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
=> \(\widehat{ABN}=\widehat{MBN}.\)
Xét 2 \(\Delta\) \(ABN\) và \(MBN\) có:
\(AB=MB\left(gt\right)\)
\(\widehat{ABN}=\widehat{MBN}\left(cmt\right)\)
Cạnh BN chung
=> \(\Delta ABN=\Delta MBN\left(c-g-c\right)\)
=> \(AN=MN\) (2 cạnh tương ứng).
=> N là trung điểm của \(AM.\)
Chúc bạn học tốt!
Bài 1:
A' B' C' A B C H H'
Xét tam giác ABC và tam giác A'B'C' đều ta có:
\(\widehat{ABC}=\widehat{A'B'C'}=60^o\)(theo tính chất của tam giác đều)
\(\Rightarrow\widehat{HAB}=\widehat{H'A'B'}\)
Xét tam giác \(ABH\) và tam giác \(A'B'H'\) ta có:
\(\widehat{AHB}=\widehat{A'H'B'}\left(=90^o\right);AH=A'H'\left(gt\right);\widehat{HAB}=\widehat{H'A'B'}\left(cmt\right)\)
Do đó tam giác ABH= tam giác A'B'H'(g.c.g)
=> AB=A'B'=> AB=AC=CB=A'B'=A'C'=B'C'(theo tính chất của tam giác đều)
Xét tam giác ABC và tam giác A'B'C' ta có:
\(AB=A'B'\left(cmt\right);\widehat{ABC}=\widehat{A'B'C'}\left(=60^o\right);BC=B'C'\left(cmt\right)\)
Do đó tam giác ABC= tam giác A'B'C'(c.g.c)(đpcm)
Xong =))