Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ :>
a, \(\Delta ABC\) có: \(\left\{{}\begin{matrix}AE=BE\left(gt\right)\\AD=DC\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\) DE là đường trung bình \(\Rightarrow DE//BC\) và \(DE=\dfrac{BC}{2}\)
Tương tự: \(\Delta GBC\) có MN là đường trung bình
\(\Rightarrow MN//BC\) và \(MN=\dfrac{BC}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}DE//MN\\DE=MN\end{matrix}\right.\)\(\Rightarrow MNDE\) là hình bình hành
b, Điều kiện của \(\Delta ABC\)là \(BD\perp CE\)
Gọi E là trung điểm của DC
Khi đó ME , EN lần lượt là đường trung bình của \(\Delta\)BDC, \(\Delta\)DAC
=> ME = \(\frac{1}{2}\)BD, EN = \(\frac{1}{2}\)AC
Mà BD = AC nên ME = NE
=> ^ENM = ^EMN
Mà ^EMN = ^ BNM( EM//BD,slt)
và ^ENM = ^MKC (EN//AC, đồng vị)
=> ^ BNM = ^MKC (đpcm)
bài này mình ko biết . KB nha tk nữa