\(\Delta ABC\)có \(\widehat{A}=\widehat{B}\). Vẽ tia CD l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

A B C D x

Cx//AB nên ta có

 \(\widehat{BCx}=\widehat{B}\) (góc so le trong)

\(\widehat{DCx}=\widehat{A}\) (góc đồng vị)

Mà \(\widehat{A}=\widehat{B}\) (giả thiết)

\(\Rightarrow\widehat{BCx}=\widehat{DCx}\) => Cx là phân giác \(\widehat{DCB}\)

6 tháng 8 2021

Ta có: `Cx////AB=>` \(\left\{{}\begin{matrix}\widehat{BCx}=\widehat{B}\left(\text{so le trong}\right)\\\widehat{DCx}=\widehat{A}\left(\text{đồng vị}\right)\end{matrix}\right.\)

Mà `\hatA=\hatB` (GT)

`=> \hat(BCx)=\hat(DCx)`

`=> Cx` là phân giác `\hat(DCB)`.

Ta có: \(\widehat{DCx}=\widehat{CAB}\)(hai góc đồng vị, Cx//AB)

\(\widehat{BCx}=\widehat{CBA}\)(hai góc so le trong, Cx//AB)

mà \(\widehat{CAB}=\widehat{CBA}\)

nên \(\widehat{DCx}=\widehat{BCx}\)

hay Cx là tia phân giác của \(\widehat{DCB}\)

4 tháng 12 2018

cho mk sửa xíu"câu c) á,trên nửa... nha chứ bên trên là mk viết sai á"!xl mí bn nha!

4 tháng 12 2018

Hình bạn tự vẽ

a) Xét tam giác BMA và tam giác CMD , có:

              BM=MC ( vì M là trung điểm của BC)

              góc BMA = góc CMD( 2 góc đối đỉnh)

               AM=MB ( giả thiết )

=> Tam giác BMA = tam giác CMD ( c-g-c )

=> góc BAM = góc CDM ( 2 góc tương ứng )(đpcm)

b) Xét tam giác BMD và tam giác CMA , có:

             BM=MC ( vì M là trung điểm của BC)

             góc BMD = góc CMA( 2 góc đối đỉnh)

             AM=MB ( giả thiết )

=> Tam giác BMD = tam giác CMA ( c-g-c )

=> BD = AC ( 2 cạnh tương ứng ) ( đpcm )

=> góc BDM = góc MAC ( 2 góc tương ứng )

Mà góc BMD và góc MAC ở vị trí sole trong

=> AC // BD ( dấu hiệu nhận biết 2 đường thẳng song song) ( đpcm )

Còn lại dễ bạn tự làm nha mỏi tay quá

22 tháng 7 2018

Đề sai nhiều quá

A A' B B' O C D 45

A) Ta có \(OC\perp OA=90^O\)

Mà OB' là tia phân giác góc A'OC

=> \(\widehat{A'OB'}=\frac{90}{2}=45^O\) \(=\widehat{AOB}\)

Mà OA là OA' nằm trên cùng 1 đường thẳng 

=> AOB và  A'OB' là 2 góc đối đỉnh  

b) \(\widehat{DOA}\Leftrightarrow\widehat{AOD}=90^O\)