\(\Delta ABC\)có \(\widehat{A}\ne90^0\). Vẽ ra phía ngoài...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

easy như 1 trò đùa

21 tháng 8 2019

giup mình với mai đi hc rồi

29 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc MCA

Ta có: ADHE là hình chữ nhật

nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: Để AM=DE thì M trùng với H

=>ΔABC cân tại A

=>AB=AC

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Bài 1:

a)

Xét tam giác $AEB$ có $I$ là trung điểm $AE$, $H$ là trung điểm $BE$ nên $IH$ là đường trung bình của tam giác $AEB$ ứng với cạnh $AB$

\(\Rightarrow IH\parallel AB; IH=\frac{AB}{2}\)

\(AB=CD, AB\parallel CD\) nên \(IH\parallel CD\parallel MC; IH=\frac{CD}{2}=MC\)

Như vậy, tứ giác $IHCM$ có cặp cạnh đối song song và bằng nhau nên $IHCM$ là hình bình hành. Do đó \(IM\parallel CH\)

b) \(\left\{\begin{matrix} IH\parallel CD\\ CD\perp BC\end{matrix}\right.\Rightarrow IH\perp BC\)

Xét tam giác $IBC$ có \(BH\perp IC, IH\perp BC\) nên $H$ là trực tâm tam giác $IBC$

\(\Rightarrow CH\perp IB\). Mà \(IM\parallel CH\Rightarrow IM\perp IB\Rightarrow \widehat{BIM}=90^0\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Bài 2:

a) Xét tứ giác $ADHE$ có \(\widehat{HDA}=\widehat{DAE}=\widehat{HEA}=90^0\) nên $ADHE$ là hình chữ nhật

\(\Rightarrow \widehat{ADE}=\widehat{AHE}\)

\(\widehat{AHE}=90^0-\widehat{EHC}=\widehat{HCE}=\widehat{C}\)

Suy ra \(\widehat{ADE}=\widehat{C}\)

b)

Gọi $I$ là giao điểm của $AM$ với $DE$

Vì $AM$ là đường trung tuyến ứng với cạnh huyền của tam giác vuông $ABC$ nên \(AM=\frac{BC}{2}=AM\Rightarrow \triangle ABM\) cân tại $M$

\(\Rightarrow \widehat{IAD}=\widehat{MAB}=\widehat{MBA}\)

\(\widehat{MBA}=90^0-\widehat{C}=90^0-\widehat{ADE}=90^0-\widehat{ADI}\) (theo kết quả phần a)

\(\Rightarrow \widehat{IAD}=90^0-\widehat{ADI}\)

\(\Rightarrow \widehat{IAD}+\widehat{ADI}=90^0\Rightarrow \widehat{AID}=90^0\)

Do đó: \(AI\perp DI\) hay \(AM\perp DE\) (đpcm)