Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).
Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).
AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).
Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).
Đáp số: Số đo góc AMC = 110 độ.
b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).
Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).
Đáp số: Số đo góc ABE = 40 độ.
A B C M D E
Đề thiếu ở ý b) với c) '-'
a) Tam giác ABC đều
=> AB = AC = BC
=> ^A = ^B = ^C = 600
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( cmt )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
A B C D E K
Bài làm
Gọi đường thẳng đi qua điểm D cắt BE tại I
Ta có: \(\widehat{KDA}=\widehat{BDI}\)
Xét tam giác BDI có:
\(\widehat{BDI}+\widehat{DBI}=90^0\) ( 1 )
Xét tam giác BAE có:
\(\widehat{ABE}+\widehat{BEA}=90^0\) ( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{BDI}=\widehat{BEA}\)
Mà \(\widehat{KDA}=\widehat{BDI}\)( cmt )
=> \(\widehat{KDA}=\widehat{BEA}\)
Xét tam giác KDA và tam giác BEA có:
\(\widehat{DAK}=\widehat{BAE}\)
AD = AE ( giả thiết )
\(\widehat{KDA}=\widehat{BEA}\)
=> Tam giác KDA = tam giác BEA ( g.c.g )
=> AK = AB ( hai cạnh tương ứng )
Mà AB = AC ( giả thiết )
=> AK = AC ( đpcm )
# Học tốt #