\(\Delta ABC\)có D;E lần lượt là trung điểm của AB, AC. Trên tia đối tia ED lấy điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E F

Bài làm

Xét tam giác AED và tam giác CEF

Ta có: AE = EC ( E là trung điểm của AC )

    \(\widehat{AED}=\widehat{FEC}\)( hai góc đối đỉnh )

            ED = EF ( giả thiết )

=> Tam giác AED = tam giác CEF ( c.g.c )

b) Vì tam giác AED = tam giác CEF ( theo câu a )

=> FC = AD ( hai cạnh tương ứng )

Mà AD = BD ( giả thiết )

=> FC = BD 

9 tháng 8 2019

A B C D F E 1 1 1 2

1) Tự biết : ∆AED = ∆CDF (c-g-c)

=> CF = AD (1)

Và \(\widehat{A_1}=\widehat{C_2}\)

Mà A1 và C2 ở vị trí so le trong

=> AB // CF

=> góc BDC = góc DCF

Có D là trung điểm AB

=> AD = BD (2)

Từ(1),(2) => BD = CF

Xét ∆BDC và ∆FCD có:

+CD chung

+ góc BDC = góc DCF (cmt)

 + BD = CF (cmt)

Do đó ∆BDC = ∆FCD (c-g-c)

=> góc D1 = góc C1

Mà D1 và C1 nằm ở vị trí so le trong

=> DE // BC

2. E là trung điểm của DF 

=> DE = 1/2 DF (3)

Ta có ∆BDC = ∆FCD (cmt)

=> BC = DF    (4)

Từ (3) và (4) => đpcm

22 tháng 10 2016

Giúp mk đi khocroi

27 tháng 12 2016

a) Xét tam giác AEDvà tam giác CÈ có :

AE=EC(vì E là trung điểm của AC )

góc DAE=góc FCE(so le trong)

DE=EF( vì E là trung điểm của F )

=> 2 tam giác bằng nhau theo trường hợp cgc(dpcm)

b)xét tam giác AED và tam giác CEF (cmt)

=> góc ADE=góc F

=> AB song song CF( có 2 góc bằng nhau ở vị trí so le trong )

c) xét tam giác BDC và tam giác FCD là

DB=CF (cmt )

góc BDC= góc F (cmt)

DC chung

=> 2 tam giác bằng nhau theo trương hợp cgc

d)tam giác BDC =tam giác FCD (cmt)

=> góc c = góc d

=> DE song song BC ( có 2 góc = nhau ở vị trí so le trong )

tam giác BDC = bằng tam giác FCD

=> BC=DF

=> DE = 1/2 DF

mà DE==BC

=> DE = 1/2 Bc (dpcm)

Dúng đó nha tich đúng cho mình nha ! thanks bạn nha nha !

27 tháng 12 2016

A B C D E F

a) Xét ΔAED và ΔCEF có:

AE = CE (suy từ gt)

\(\widehat{AED}\) = \(\widehat{CEF}\) (đối đỉnh)

ED = EF (gt)

=> ΔAED = ΔCEF (c.g.c).

b) Vì ΔAED = ΔCEF nên \(\widehat{DAE}\) = \(\widehat{ECF}\) (2 góc t ư )

mà 2 góc này ở vị trí so le trong nên AB // CF.

c) Vì ΔAED = ΔCEF nên AD = FC (2 cạnh t ư)

mà AD = DB (suy từ gt) => DB = FC

Do AB // CF hay DB // CF nên \(\widehat{BDC}\) = \(\widehat{DCF}\) (so le trong)

Xét ΔBDC và ΔFCD có:

BD = FC ( cm trên)

\(\widehat{BDC}\) = \(\widehat{DCF}\) (cm trên)

CD chung

=> ΔBDC = ΔFCD (c.g.c)

d) Lại do ΔBDC = ΔFCD nên \(\widehat{BCD}\) = \(\widehat{FDC}\) (2 góc t ư); DF = BC ( 2 cạnh t ư)

mà 2 góc này ở vị trí so le trong nên DE // BC

mà DE = \(\frac{1}{2}\)EF => DE = \(\frac{1}{2}\)BC.

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau