Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ và AD=DE
AD=DE
DE<DC
=>AD<DC
a: góc ACB=90-50=40 độ
b: Xét ΔBAD va ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
c: Xét ΔADM vuông tại A và ΔEDC vuông tạiE có
DA=DE
góc ADM=góc EDC
Do đó: ΔADM=ΔEDC
=>DM=DC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:
$AB=AE$ (gt)
$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)
$AD$ chung
$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$
$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$
$\Rightarrow \widehat{DBM}=\widehat{DEC}$
Xét tam giác $DBM$ và $DEC$ có:
$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)
$BD=ED$ (cmt)
$\widehat{DBM}=\widehat{DEC}$ (cmt)
$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)
Hình tự vẽ nhé ~
a) ΔABD = ΔEBD.
Xét hai tam giác vuông ABD và EBD có:
BD là cạnh chung.
∠ABD = ∠DEB (BD là phân giác)
Do đó: ΔABD = ΔEBD (c-g-c).
b) DI = DC.
Vì ΔABD = ΔEBD (câu a)
⇒ AD = ED (hai cạnh tương ứng)
Xét hai tam giác vuông DAI và DEC có:
AD = DE (cmt)
∠ADI = ∠EDC (hai góc đối đỉnh)
Do đó: ΔDAI = ΔDEC (cgv - gnk)
⇒ DI = DC (hai cạnh tương ứng)
c) AE // IC
Gọi giao điểm của BD và AE là K, của BD và IC là H (B, K, D, H thẳng hàng)
Vì ΔABD = ΔEBD (câu a)
⇒ BA = BE (hai cạnh tương ứng)
Xét ΔBAK và ΔBEK có:
BA = BE (cmt)
∠ABD = ∠DEB (BD là phân giác)
BK : chung
Do đó: ΔBAK = ΔBEK (c-g-c)
⇒ ∠AKB = ∠EKB (hai góc tương ứng)
Mà ∠AKB + ∠EKB = 180o (hai góc kề bù)
⇒ ∠AKB = ∠EKB = 180o / 2 = 90o hay BD ⊥ AE (1)
Vì ΔDAI = ΔDEC (câu b)
⇒ AI = EC (hai cạnh tương ứng)
Ta có: BI = BA + AI
BC = BE + EC
Mà BA = BE (hai cạnh tương ứng)
AI = EC (hai cạnh tương ứng)
⇒ BI = BC.
Xét ΔBIH và ΔBCH có:
BI = BC (cmt)
∠ABD = ∠DEB (BD là phân giác)
BH : chung
Do đó: ΔBIH = ΔBCH (c-g-c)
⇒ ∠IHB = ∠CHB (hai góc tương ứng)
Mà ∠IHB + ∠CHB = 180o (hai góc kề bù)
⇒ ∠IHB = ∠CHB = 180o / 2 = 90o hay BD ⊥ IC (2)
Từ (1) và (2) suy ra: AE // IC (cùng song song với BD)