Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔANM có
AB/AN=AC/AM
góc A chung
=>ΔABC đồng dạng với ΔANM
b: ΔABC đồng dạng với ΔANM
=>BC/NM=AB/AN
=>4,5/NM=2/4=1/2
=>NM=9cm
Xét △AMN có MN//BC
Theo định lí Ta lét ta có
\(\frac{AB}{AM}=\frac{BC}{MN}\Leftrightarrow\frac{10}{25}=\frac{BC}{45}\Leftrightarrow BC=18\left(cm\right)\)
Và \(\frac{AB}{AM}=\frac{AC}{AN}\Leftrightarrow\frac{10}{25}=\frac{16}{AN}\Leftrightarrow AN=40\left(cm\right)\)
Trần Trung Nguyên, Y, Phùng Tuệ Minh, Nguyen, Nguyễn Quỳnh Chi, Lê Anh Duy, Giang Thủy Tiên, Lê Thị Mỹ Duyên, Rồng Đom Đóm, Khôi Bùi , Nguyễn Thành Trương, --Hell_Angel--, svtkvtm, Nguyễn Huy Tú, Akai Haruma, Ace Legona, Nguyễn Thanh Hằng, Ribi Nkok Ngok, Mysterious Person, soyeon_Tiểubàng giải, Võ Đông Anh Tuấn, Phương An, Trần Việt Linh,...
Xét ΔABC có MN//BC
nên AM/AB=AN/AC
=>AN/4=3/5
=>AN=2,4cm
Xét \(\Delta\)AMN và \(\Delta\)ABC có:
\(\frac{AM}{AB}=\frac{AN}{AC}\left(\frac{10}{15}=\frac{14}{21}\right)\)
=> MN // BC (1)
Gọi M là trung điểm của BC.
Gọi G là giao điểm AM và MN
Xét \(\Delta\)ABM có:
MG// BM ( theo(1))
=> \(\frac{AG}{AM}=\frac{AM}{AB}=\frac{10}{15}=\frac{2}{3}\)
=> G là trọng tâm của \(\Delta\)ABC
Vậy MN qua trong tâm \(\Delta\)ABC.
a: Xét ΔOAD và ΔOMK có
\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)
\(\widehat{AOD}=\widehat{MOK}\)
Do đó: ΔOAD đồng dạng với ΔOMK
=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)
=>\(OA\cdot OK=OM\cdot OD\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)
mà BD+CD=BC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)
=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)
c: ME//AD
=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)
KM//AD
=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)
AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)
=>AE=AK
Xét ΔCAD có EM//AD
nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)
=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)
mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)
nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)
=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)
=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)
Cho AH là trung tuyến tgiac ABC, AH cắt MN tại O
Có \(\frac{AM}{AB}=\frac{10}{15}=\frac{2}{3},\frac{AN}{AC}=\frac{14}{21}=\frac{2}{3}\)
\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{2}{3}\Rightarrow\) MN//BC
Xét \(\Delta ABH\) có MO//BH \(\Rightarrow\frac{AM}{AB}=\frac{AO}{AH}=\frac{2}{3}\Rightarrow\) O là trọng tâm tgiac ABC đc MN đi qua