\(\Delta ABC\)có A=90, \(D\in AD\)gọi M,N,P,Q theo thứ tự...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

easy như 1 trò đùa

Sửa đề; HD vuông góc với AB tại D

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

=>AH=DE

b: Sửa đề: AM vuông góc với DE

Ta có: ΔABC vuông tại A
mà AM là trung tuyến

nên MA=MC

=>góc MAC=góc MCA

Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: góc EDN=góc EDH+góc NDH

=góc HAC+góc NHD

=góc HAC+góc BCA

=90 độ

=>ND vuông góc với ED(1)

góc KED=góc KEH+góc DEH

=góc KHE+góc DAH

=góc CBA+góc BAH=90 độ

=>EK vuông góc với ED(2)

Từ (1) và (2) suy ra EK//DN

29 tháng 10 2018

Gọi M là trung điểm BC

+) vecto AI=vecto IG=vecto GM

+) vecto AI=1/3vecto AM=1/3(vecto CM-vecto CA)=2/3vecto CB-1/3vecto CA

+) vecto AK=1/5vecto AB=1/5vecto CB-1/5vectoCA

+) vecto CK=vecto CA+vecto AK=vecto CA+1/5vecto AB

=vecto CA+1/5vecto CB-1/5vecto CA=1/5vecto CB+4/5vecto CA

+)vecto CI=vecto CA+vecto AI= vecto CA+1/3vecto AM

=vecto CA+1/3vecto AC+1/6vecto CB=2/3vecto CA+1/6vecto CB

b/

+) vecto CI =2/3vecto CA+1/6vecto CB=5(4/30vecto CA+1/30vecto CB)

+) vecto CK=6(4/30vecto CA+1/30vecto CB)

do đó 1/5vecto CI=1/6vecto CK

Nên C,I,K thẳng hàng.

2 tháng 4 2020

a, Do ABCD là hình bình hành ( gt ) 

=> BAD + ADC = 180 độ ( t/c hbh )

Mà BAD = 120 độ ( gt ) => ADC = 60 độ

Gọi đường phân giác của góc ADC đi qua trung điểm cạnh AB là DI

=> ADI = CDI = 30 độ

Xét tam giác ADI có : DAI + ADI + AID = 180 độ ( tổng 3 góc của 1 tam giác )

=> AID = ADI = 30 độ => Tam giác AID cân

=> AI = AD mà AI = 1/2 AB => AD = 1/2 AB hay AB = 2.AD ( đpcm )

b, CM ADF đều 

Do ABCD là hbh ( gt ) => AB = CD ( t/c hbh )

=> 1/2 AB = 1/2 CD => AI = BI = DF = CF

mà AI = AD => AD = DF

=> tam giác ADF cân tại D có góc ADF = 60 độ ( cmt )

=> ADF đều

CM AFC cân : 

DO tam giác ADF đều ( cmt ) => AF = DF ( t/c tg đều )

mà DF = FC ( gt ) => AF = FC => tam giác AFC cân tại F ( đpcm )

c, Ta có : AF = DF = CF ( cmt ) 

=> AF = 1/2 ( DF +CF ) => AF = 1/2 CD

Xét tam giác ADC có AF là trung tuyến ứng với cạnh CD

và AF = 1/2CD 

=> tam giác ADC vuông tại A ( dấu hiệu nhận biết tam giác vuông )

=> AD vuông góc với AD ( Đpcm )