\(\Delta ABC\)có A=90, D thụôc AD,E thụôc AC gọi M,N,P,Q theo thứ tự là trung...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Xét ΔCDB có

Q là trung điểm của CD
P là trung điểm của BC

Do đó:QP là đường trung bình

=>QP//DB và QP=DB/2(1)

Xét ΔEDB có

M là trung điểm của ED

N là trung điểm của EB

Do đó: MN là đường trung bình

=>MN//DB và MN=DB/2(2)

Từ (1) và (2) suy ra QP//MN và QP=MN

Xét ΔDEC có 

M là trung điểm của ED

Q là trung điểm của CD

Do đó: MQ là đường trung bình

=>MQ//EC

=>MQ//AC

=>MQ\(\perp\)AB

=>MQ\(\perp\)QP

Xét tứ giác MNPQ có 

QP//MN

QP=MN

Do đó: MNPQ là hình bình hành

mà \(\widehat{MQP}=90^0\)

nên MNPQ là hình chữ nhật

Suy ra: MP=NQ

30 tháng 10 2019

Tham khảo:

\(\Rightarrow\) Tứ giác \(DIEK\) là hình thang (định nghĩa hình thang) (đpcm).

Hình thang vuông là hình thang chỉ có 1 góc vuông thôi nhưng trong tứ giác \(DIEK\) có tận 2 góc vuông nên mình nghĩ chỉ suy ra là hình thang thôi.

Chúc bạn học tốt!

Xét ΔDCB có

Q là trung điểm của DC

P là trung điểm của BC

Do đó: QP là đường trung bình

=>QP//DB và QP=DB/2(1)

Xét ΔEDB có

M là trung điểm của ED

N là trung điểm của EB

Do đó: MN là đường trung bình

=>MN//DB và MN=DB/2(2)

Từ (1) và (2)suy ra MN//PQ và MN=PQ

Xét ΔDEC có 

M là trung điểm của ED

Q là trung điểm của CD

Do đó: MQ là đường trung bình

=>MQ//EC

=>MQ//AC

=>MQ\(\perp\)AB

=>MQ\(\perp\)QP

Xét tứ giác MNPQ có 

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

mà \(\widehat{MQP}=90^0\)

nên MNPQ là hình chữ nhật

SUy ra: MP=NQ

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

góc A chung

Do đo: ΔABM đồng dạng với ΔACN

Suy ra:AM/AN=AB/AC
hay AM/AB=AN/AC

Xét ΔAMN và ΔABC có

AM/AB=AN/AC
góc A chung

Do đo: ΔAMN đồng dạng với ΔABC

b: undefined