Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đẳng thức quen thuộc: \(a^3+b^3+c^3=3abc\Rightarrow\left[{}\begin{matrix}a=b=c\\a+b+c=0\end{matrix}\right.\)
Do \(a;b;c\) là 3 cạnh của tam giác nên \(a;b;c>0\Rightarrow a+b+c>0\)
Ta có:
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\) (do a+b+c>0)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Vậy ABC là tam giác đều
Áp dụng bất đẳng thức cosi ta được
\(a^3+b^3+c^3\ge3abc\)
Dấu = xảy ra khi a = b = c
Hay tam giác ABC đều
=> Góc ABC = 60°
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
đến đây ez tự làm nốt nhé, ko ra ib mk
Ta có : \(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ca=0\left(2\right)\end{cases}}\)
Từ (1) \(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Khi đo s: \(P=\frac{abc}{\left(-a\right)\left(-b\right)\left(-c\right)}=-1\)
Từ (2) \(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Khi đó : \(P=\frac{a^3}{2a\cdot2a\cdot2a}=\frac{1}{8}\)
Vậy : \(P=\frac{1}{8}\) hoặc \(P=-1\) với a,b,c thỏa mãn đề.
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c