K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

13 tháng 11 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

a: Xét tứ giác AEHD có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

Do đó: AEHD là hình chữ nhật

8 tháng 8 2018

a)

Xét ΔvABD và ΔvHBD, ta có:

BD cạnh chung

∠ABD = ∠HBD ( BD là phân giác của ∠B )

⇒ ΔABD = ΔHBD ( ch-gn ) ( đpcm1 )

⇒ AB = HB ( cctứ ) ⇒ B thuộc đường trung trực của AH (1)

AD = HD ( cctứ ) ⇒ D thuộc đường trung trực của AH (2)

Từ (1), (2) ⇒ BD là đường trung trực của AH

⇒ BD ⊥ AH ( đpcm2 )

b)

Xét ΔvABC và ΔvHBK, ta có:

AB = HB ( cmt )

∠B chung

⇒ ΔABC = ΔHBK ( cgv-gn ) ( đpcm )

c)

ΔBKC: Hai đường cao CA và KH cắt nhau tại D

⇒ D là trực tâm của ΔBKC

⇒ BD là đường cao của ΔBKC

⇒ BD ⊥ KC

Vì BD ⊥ AH (cmt); BD ⊥ KC (cmt)

⇒ AH // KC

⇒ Tứ giác AHCK là hình thang

Hình thang AHCK có: AC = HK (ΔABC = ΔHBK)

⇒ Tứ giác ACHK là hình thang cân (đpcm)

16 tháng 12 2018

giải thì biết giải nhưng khi nào thích đã anh bạn à


 

Làm ơn giúp mình với. À mà mình con gái chứ không phải anh bạn đâu.

AH
Akai Haruma
Giáo viên
24 tháng 4 2018

Lời giải:

Bạn tự vẽ hình giùm mình nhé.

a) Xét tam giác $BAC$ và $BHA$ có:

\(\left\{\begin{matrix} \widehat{BAC}=\widehat{BHA}=90^0\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle BAC\sim \triangle BHA(g.g)\)

b)

Xét tam giác $BAC$ và $AHC$ có:

\(\left\{\begin{matrix} \widehat{BAC}=\widehat{AHC}=90^0\\ \text{chung góc C}\end{matrix}\right.\Rightarrow \triangle BAC\sim \triangle AHC(g.g)\)

\(\Rightarrow \frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC\)

c)

Xét tam giác $HEA$ và $BHA$ có:

\(\left\{\begin{matrix} \widehat{HEA}=\widehat{BHA}=90^0\\ \widehat{EHA}=\widehat{HBA}(=90^0-\widehat{BHE})\end{matrix}\right.\)

\(\Rightarrow \triangle HEA\sim \triangle BHA(g.g)\)

\(\Rightarrow \frac{HA}{EA}=\frac{BA}{HA}\Rightarrow HA^2=AE.AB(1)\)

Hoàn toàn TT ta có: \(\triangle HFA\sim \triangle CHA\Rightarrow \frac{HA}{FA}=\frac{CA}{HA}\)

\(\Rightarrow HA^2=AF.AC(2)\)

Từ \((1)(2)\Rightarrow AF.AC=AE.AB\Rightarrow \frac{AE}{AF}=\frac{AC}{AB}\)

Tam giác $AFE$ và $ABC$ có:

\(\left\{\begin{matrix} \frac{AE}{AF}=\frac{AC}{AB}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle AFE\sim \triangle ABC(c.g.c)\)

d)

Có: \(\widehat{MEB}=\widehat{AEF}=\widehat{ACB}\) (do \(\triangle AFE\sim \triangle ABC\) )

Xét tam giác $MEB$ và $MCF$ có:

\(\left\{\begin{matrix} \text{chung góc M}\\ \widehat{MEB}=\widehat{MCF}\end{matrix}\right.\Rightarrow \triangle MEB\sim \triangle MCF(g.g)\)

\(\Rightarrow \frac{ME}{MB}=\frac{MC}{MF}\Rightarrow ME.MF=MB.MC\)

20 tháng 7 2019

A B C M N E D I

a) Vì AM = MB và AN =NC

=> MN là đường trung bình cảu tam giác ABC

=> MN // BC

=> Tứ giác BCNM là hình thang

Vì tam giác ABC cân tại A

=> C = B 

=> hình thang BCNM cân

b) ABD + ABE = 180 ( kề bù )

    ACE + ACD  =  180 ( kề bù )

mà ABE = ACD ( tam giác ABC cân tại A )

=> ABD = ACE 

Xét tam giác ABD và tam giác ACE có :

 AB = AC ( tam giác ABC cân tại A )

ABD = ACE ( cm trên )

BD = CE ( GT )

=> tam giác ABD = tam giác ACE ( c.g.c )

=> AD = AE ( 2 cạnh tương ứng )

=> tam giác ADE cân tại A

Còn 2 phần cuối mk đang nghĩ

20 tháng 7 2019

Cám ơn bạn đã giúp mình câu ab nha