\(\Delta ABC\)cân tại \(A\)có \(\wid...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

a. Do tam giác ABC cân có \(\widehat{BAC}=100^o\Rightarrow\widehat{ABC}=\widehat{ACB}=40^o\)

Từ đó cũng có \(\widehat{ACH}=\widehat{BCH}=20^o\)

Xét tam giác AHC ta thấy ngay \(\widehat{AHC}=180^o-\widehat{HAC}-\widehat{ACH}=60^o\)

Lấy I, J trên BC sao cho \(\widehat{CHI}=80^o;\widehat{CHJ}=60^o\)

Ta có \(\Delta HAC=\Delta HJC\left(g-c-g\right)\Rightarrow AH=HJ\)

\(\widehat{HJC}=\widehat{HAC}=100^o\Rightarrow\widehat{HJI}=80^o\)

Xét tam giác HIC có \(\widehat{HCI}=20^o;\widehat{CHI}=80^o\Rightarrow\widehat{HIC}=80^o\Rightarrow HC=IC\)

Xét tam giác HIJ có \(\widehat{HIJ}=\widehat{HJI}=80^o\Rightarrow HJ=HI\)

HIJ là góc ngoài tam giác BHI nên mà nó gấp đôi góc \(\widehat{HBI}\Rightarrow\) tam giác BHI cân tại I hay HI = BI.

Vậy thì BC = BI + IC = HI + HC = AH + HC (đpcm)

b. 

24 tháng 5 2017

cau b;ve diem K sao cho BC la trung truc cua MK sau do CM AK=AC bg phan chung

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20