Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Do tam giác ABC cân có \(\widehat{BAC}=100^o\Rightarrow\widehat{ABC}=\widehat{ACB}=40^o\)
Từ đó cũng có \(\widehat{ACH}=\widehat{BCH}=20^o\)
Xét tam giác AHC ta thấy ngay \(\widehat{AHC}=180^o-\widehat{HAC}-\widehat{ACH}=60^o\)
Lấy I, J trên BC sao cho \(\widehat{CHI}=80^o;\widehat{CHJ}=60^o\)
Ta có \(\Delta HAC=\Delta HJC\left(g-c-g\right)\Rightarrow AH=HJ\)
\(\widehat{HJC}=\widehat{HAC}=100^o\Rightarrow\widehat{HJI}=80^o\)
Xét tam giác HIC có \(\widehat{HCI}=20^o;\widehat{CHI}=80^o\Rightarrow\widehat{HIC}=80^o\Rightarrow HC=IC\)
Xét tam giác HIJ có \(\widehat{HIJ}=\widehat{HJI}=80^o\Rightarrow HJ=HI\)
HIJ là góc ngoài tam giác BHI nên mà nó gấp đôi góc \(\widehat{HBI}\Rightarrow\) tam giác BHI cân tại I hay HI = BI.
Vậy thì BC = BI + IC = HI + HC = AH + HC (đpcm)
b.
a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )
Gọi giao điểm của AB và CD là K
Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)
\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)
\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)
Gọi J là trung điểm DM
C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)
rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)
LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ
Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)
Xét tam giác MAB và tam giác MAC
MB=MC(tam giác MBC đều)
Chung MA
AB=AC(tam giác ABC cân tại A)
=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA
=> góc BMA=30 độ
Xét tam giác BMA và tam giác BCD
góc BMA=BCD(=30)
BM=BC(tam giác MBC đều)
goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )
=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40
=> BAD=(180-40)/2=70
Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)
Xét tam giác BIA và tam giác CIA
AB=AC ( ABC cân tại A)
ABI=ACI(=10)
BI=CI(do BIC đều)
=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20
Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)
Do đó BAI=BDC hay BDC=20
xem câu hỏi tương tự nha pn......!