\(\Delta ABC\)cân tại A (\(\widehat{B}=\widehat{C}=40^0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

a) \(\Delta ABC\)cân tại A có \(\widehat{B}=\widehat{C}\)nên \(\widehat{A}=180^0-2.40^0=100^0\)

Vẽ \(DE//BC\left(E\in AB\right)\)

Trên tia BC lấy điểm F sao cho BD = BF.

Vì BD là phân giác của \(\widehat{B}\)nên \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}=20^0\)

Vì \(DE//BC\)nên \(\widehat{EDB}=\widehat{DBC}\)(so le trong)

Mà \(\widehat{ABD}=\widehat{DBC}\)(Do BD là phân giác của \(\widehat{B}\))

Suy ra \(\widehat{EDB}=\widehat{ABD}\)\(\Rightarrow\Delta EBD\)tại E \(\Leftrightarrow EB=ED\)(1)

Vì \(DE//BC\)nên \(\hept{\begin{cases}\widehat{AED}=\widehat{B}\\\widehat{ADE}=\widehat{C}\end{cases}}\)(đồng vị)

Mà \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A) nên \(\widehat{AED}=\widehat{ADE}\)

\(\Rightarrow\Delta AED\)cân tại A \(\Rightarrow AE=AD\)

Lại có AB = AC (gt) nên EB = DC (2)

Từ (1) và (2) suy ra ED = DC

BD = BF(theo cách vẽ) nên \(\Delta BDF\)cân tại B có \(\widehat{DBF}=20^0\)

\(\Rightarrow\widehat{BDF}=\widehat{BFD}=\frac{180^0-20^0}{2}=80^0\)

Mà \(\widehat{DFB}+\widehat{DFC}=180^0\)(kề bù) nên ​\(\widehat{DFC}=180^0-80^0=100^0\)

​Áp dụng định lý về tổng ba góc trong tam giác vào tam giác FDC, có:

       \(\widehat{FDC}=180^0-100^0-40^0=40^0\)

Xét \(\Delta AED\)và \(\Delta FDC\)​có:

      \(\widehat{ADE}=\widehat{FCD}\left(=40^0\right)\)

      ED = DC( cmt)

      \(\widehat{AED}=\widehat{FDC}\left(=40^0\right)\)

Suy ra \(\Delta AED=\Delta FDC\left(g-c-g\right)\)

\(\Rightarrow AD=FC\)(hai cạnh tương ứng)

Lúc đó: \(BD+AD=BF+FC=BC\left(đpcm\right)\)

b) Vẽ tam giác đều AMG trên nửa mặt phẳng bờ AB chứa điểm C

Ta có: \(\widehat{GAC}=\widehat{BAC}-\widehat{BAG}=100^0-60^0=40^0\)

2 tháng 9 2019

Cách khác theo cô Huyền:3

Câu hỏi của thu - Toán lớp 7 - Học toán với OnlineMath

17 tháng 4 2019

cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0
20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0