\(\Delta ABC\)cân tại A \((\widehat{A} < 90^{^{ }o})\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

hình bạn tự vẽ nhé!!

a, Xét tam giác ABD và tam giác ACE

có góc ADB = góc AEC (=90độ)

AB =AC (do tam giác ABC cân tại A)

góc A chung 

=> 2 tam giác ABD=ACE(ch-gn)

b, xét tam giác BDC và tam giác CEB

có góc BDC = góc CEB (=90độ)

BC là cạnh chung

góc ABC = góc ACB (do tam giác ABC cân tại A)

=>2 tam giác BDC = CEB (ch-gn)

=> góc DBC = góc ECB(2 góc tương ứng)

Xét tam giác BHC có góc DBC = góc ECB (cmt)

=> tam giác BHC cân tại H

c, Xét tam giác DHC có HDC = 90 độ

=>  HC > HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà HC = HB (vì tam giác BHC cân tại H)

Từ đó => HB>HD

d, mình chưa học!!sorry!!

chúc bạn hk tốt!!

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA. a) Chứng minh EH \(\perp\)BC . b) Chứng minh BE là đường trung trực của AH. c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC. d) Chứng minh AH // KC. e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng. 2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm. Tìm độ dài...
Đọc tiếp

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA.
a) Chứng minh EH \(\perp\)BC .
b) Chứng minh BE là đường trung trực của AH.
c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC.
d) Chứng minh AH // KC.
e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng.

2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm.
Tìm độ dài cạnh NP?
b) Cho tam giác DEF có DE = 10 cm; DF = 24cm; EF = 26cm. Chứng minh tam giác DEF vuông?

3. Cho \(\Delta\)ABC cân tại A có AB = 5cm, BC = 6cm.
Kẻ AD vuông góc với BC (D \(\in\) BC ).
a) Tìm các tam giác bằng nhau trong hình.
b) Tính độ dài AD ?

4. Cho tam giác ABC vuông tại A, có \(\widehat{B}\) và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: \(\Delta\)ABD = \(\Delta\)EBD.
b) Chứng minh: \(\Delta\)ABE là tam giác đều.
c) Tính độ dài cạnh BC.

5. Cho góc xOy .Trên Ox lấy điểm A , trên Oy lấy điểm B sao cho
OA = OB . Qua A kẻ đường thẳng a vuông góc với Ox ; qua B kẻ đường thẳng b vuông góc với Oy . Hai đường thẳng a và b cắt nhau tại C . Chứng minh rằng :
a ) \(\Delta\)OAC = \(\Delta\)OBC.

b) CA = CB
c) OC là phân giác của góc xOy .

6. Cho \(\Delta\)ABC cân tại A, có \(\widehat{B}\) = 700 . Tính độ \(\widehat{A}\) ?

7. Cho \(\Delta\)ABC cân tại A, AB = AC = 5 cm; BC = 8 cm. Kẻ AH \(\perp\) BC (H \(\in\)BC)
a) Chứng minh HB = HC
b) Tính AH.
c) Kẻ HD \(\perp\) AB (D \(\in\)AB); HE \(\perp\) AC (E \(\in\)AC). CMR: \(\Delta\)HDE là tam giác cân.

1
12 tháng 5 2018

a. Xét tam giác BAE và tam giác BHE có:

BA=BH

BE chung

góc ABE=HBE ( phân giác BE )

=> tam giác BAE = tam giác BHE (c.g.c)

=> góc BAE=BHE ( 2 góc tương ứng)

mà góc BAE= 90 độ

=> góc BHE=90 độ => EH ⊥BC .

b.tam giác BAE = tam giác BHE => BA=BH và AE=EH

=> BE là đường trung trực của AH

c.Xét tam giác AKE và tam giác HCE có:

góc AEK=HEC ( đối đỉnh)

AE=EH

góc EAK=EHC (= 90 độ)

=> tam giác AKE = tam giác HCE (g.c.g)

=> EK=EC

d.Có: BA=BH => tam giác BAH cân tại B

=> góc BHA= 180 độ - góc HBA / 2 (1)

Có: BC=BH+HC

BK=BA+AK

mà BH=BA

HC=AK ( do tam giác AKE = tam giác HCE )

=> BC=BK => tam giác BCK cân tại B

=> góc BCK=180 độ - góc HBA /2 (2)

Từ (1) (2) => góc BHA=BCK

mà 2 góc ở vị trí đồng vị

=> AH//CK

e. Xét tam giác BMC và tam giác BMK có:

BC=BK

CM=KM ( M là trung điểm của KC )​

BM chung

=> tam giác BMC = tam giác BMK (c.c.c)

=> góc MBC=MBK => BM là tia phân giác của góc B

mà BE cũng là phân giác của góc B

=> ba điểm B, E, M thẳng hàng.

24 tháng 3 2020

Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.

a,Chứng minh AB = AC.

b,Tính số đo góc CAO

c,Tam giác ABC là tam giác gì ? Vì sao ?

d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO

e,Tính số đo góc CBO?

g,Chứng minh AO là đường trung trực của BC?

Các bạn giúp mình với,huhukhocroi

1. Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm I của 1 đoạn thẳng đó. Chứng minh rằng: a) \(\Delta\)AIC = \(\Delta\)BID và \(\Delta\)AID = \(\Delta\)BIC ; b) AC // BD và AD // BC ; c) \(\Delta\)ABC = \(\Delta\)BDA và \(\Delta\)CAD = \(\Delta\)DBA. 2. Cho hai đoạn thẳng AB và CD song song và bằng nhau. Gọi I là giao điểm của AC và BD. Chứng minh rằng: a) I là trung điểm của mỗi đoạn thẳng AC và BD ; b) AD // BC. 3. Qua...
Đọc tiếp

1. Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm I của 1 đoạn thẳng đó. Chứng minh rằng:
a) \(\Delta\)AIC = \(\Delta\)BID và \(\Delta\)AID = \(\Delta\)BIC ;
b) AC // BD và AD // BC ;
c) \(\Delta\)ABC = \(\Delta\)BDA và \(\Delta\)CAD = \(\Delta\)DBA.
2. Cho hai đoạn thẳng AB và CD song song và bằng nhau. Gọi I là giao điểm của AC và BD. Chứng minh rằng:
a) I là trung điểm của mỗi đoạn thẳng AC và BD ;
b) AD // BC.
3. Qua trung điểm I của đoạn thẳng BC, kẻ đường vuông góc với BC. Trên đường thẳng đó lấy điểm A.
a) Chứng minh AI là tia phân giác của góc \(\widehat{BAC}\);
b) Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh rằng: AB = AC = CD = DB.
4. Cho \(\Delta\)ABC vuông tại A. Phân giác góc B cắt AC tại D. Lấy điểm E trên đoạn thẳng BC sao cho BE = BA. Gọi I là giao điểm của BD và AE.
a) Chứng minh \(\Delta\)BAD = \(\Delta\)BED.
b) So sánh AD và ED, tính \(\widehat{BED}\).
c) Chứng minh AI = EI và AE \(\perp\)BD.
5. Cho tam giác ABC, hai đường phân giác AD, BE. Chứng minh:
a) Nếu \(\widehat{ADC}\)= \(\widehat{BEC}\)thì \(\widehat{A}\) = \(\widehat{B}\) ;
b) Nếu \(\widehat{ADB}\) = \(\widehat{BEC}\) thì \(\widehat{A}\) + \(\widehat{B}\)= \(120^0\)
6. Cho tam giác ABC ( \(\widehat{A}\) \(\ne\) \(90^0\)). Trên nửa mặt phẳng bờ AB không chứa điểm C , vẽ tia Ax \(\perp\) AB, trên đó lấy điểm E sao cho AE = AB , trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia Ay \(\perp\) AC , trên đó lấy điểm D sao cho AD = AC.
a) Chứng minh rằng BD = CE và BD \(\perp\) CE ;
b) Hai đường thẳng AB và DE có vuông góc với nhau không? Vì sao?
7. Cho tam giác ABC có \(\widehat{A}\) = \(80^0\), \(\widehat{B}\) = \(60^0\). Trên đường thẳng BC lấy các điểm BC lấy các điểm B' và C' sao cho BB' = AB và CC' = AC. Tính số đo các góc của tam giác AB'C' .

1

Bài 4: 

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Ta có: ΔBAE cân tại B

mà BI là đường phân giác

nên I là trung điểm của AE

hay IA=IE

Ta có: BA=BE

DA=DE

Do đó: BD là đường trung trực của AE

=>BD vuông góc với AE

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

29 tháng 5 2018

Xin lỗi bạn nhé, câu cuối, mik chưa chắc chắn lắm đâu!

a, Xét \(\Delta ABDvà\Delta ACEcó:\\ \left\{{}\begin{matrix}\widehat{BDA}=\widehat{CEA}\left(=90^0\right)\\\widehat{BAC}làgócchung\\AB=AC\left(gt\right)\end{matrix}\right.\\ \Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)

b, Theo câu a , ta có :

\(\widehat{ABD}=\widehat{ACE}\left(haigóctươngứng\right)\)

Lại có ;\(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

\(\Rightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\\ \Rightarrow\Delta BHCcântạiH\)

c, Xét tam giác vuông DHC ta có :

HC > HD ( do HC là cạnh huyền )

Mà HC = HB ( tam giác BHC cân tại H )

\(\Rightarrow HB>HD\)

d, Gọi giao điểm của BN và CM là I.

Ta có ; \(HB=HC;MH=NH\Rightarrow HB+HM=HC+HN\\ \Leftrightarrow BM=CN\)

\(Xét\Delta BCMvà\Delta CBNcó:\\ \left\{{}\begin{matrix}BM=CN\left(cmt\right)\\\widehat{MBC}=\widehat{NCB}\left(cmt\right)\\BClàcạnhchung\end{matrix}\right.\\ \Rightarrow\Delta BCM=\Delta CBN\left(c-g-c\right)\\ \Rightarrow\widehat{NBC}=\widehat{MCB}\left(haigóctươngứng\right)\\ \Rightarrow\Delta BICcântạiI\)

Ta có :\(\left\{{}\begin{matrix}AB=AC\\HB=HC\end{matrix}\right.\\ \Rightarrow A,HthuộcđườngtrungtrựccủaBC\\ \Rightarrow AHlàđườngtrungtrựccủaBC\)

Vì IB = IC nên I cũng thuộc đường trung trực của BC

\(\Rightarrow I\in AH\)

\(I\in IB;I\in IC\)

\(\Rightarrow BN,AH,CMđồngquy\)