K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Hình bn tự vẽ nha!!!

a,Xét ∆ABC và ∆ADC có

AB=AD (gt)

Góc BAC = góc DAC = 90°

AC : cạnh chug

=> ∆ABC = ∆ADC ( c.g.c)

=> góc ABC= góc ADC  và góc BCA = góc DCA ( 2 góc tươg ứg ).        (1)

=>Góc BAC= góc B + góc ACB và góc DAC = góc D + góc DCA.     (2)

Mà góc B = Góc D.           (3)

Từ (1),(2),(3)=> góc BCA+ góc DCA= 90° hay góc BCD=90°.              (4)

Từ (4)=> ∆BCD là ∆ vuôg

b, ∆ABC = ∆ADC ( câu a)=> BC = CD = 5cm

a)Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\) (ĐL Pytago)

\(5^2=3^2+AC^2\)

25=9+\(AC^2\)

25-9=\(AC^2\)

\(AC^2\)=16

Vậy...

b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)

Xét tam giác BAC  và tam giác DAC có:

BC=AD(gt)

góc BAC=góc DAC(cmt =90độ )

AC cạnh chung

\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)

\(\Rightarrow BC=DC\)(..)(1)

và góc B= góc D(...)(2)

Từ (1) và(2)có tam giác BCD cân tại C

 

28 tháng 1 2020

Tam giác ABC cân tại A 

=> Góc ABC = góc ACB (hai góc kề một đáy)

Xét tam giác ABD có AB = AD (= AC)

=> Tam giác ABD cân tại A

=> Góc ABD = góc ADB (hai góc kề một đáy).

Vì góc ACB + góc ABC + góc ABD + góc ADB = 180 độ ( tổng ba góc trong tam giác DBC)

Do vậy góc DBC = 90 độ

Vậy tam giác BCD là tam giác vuông vì có góc DBC + 90 độ.

25 tháng 2 2020

Tam giác ABC cân tại A 
=> Góc ABC = góc ACB (hai góc kề một đáy)
Xét tam giác ABD có AB = AD (= AC)
=> Tam giác ABD cân tại A
=> Góc ABD = góc ADB (hai góc kề một đáy).
Vì góc ACB + góc ABC + góc ABD + góc ADB = 180 độ ( tổng ba góc trong tam giác DBC)
Do vậy góc DBC = 90 độ
=>tam giác BCD là tam giác vuông vì có góc DBC =90 độ.

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

7 tháng 3 2022

a, Ta có 

\(BC^2=AB^2+AC^2\Rightarrow25=16+9\)( luôn đúng ) 

Vậy tam giác ABC vuông tại A

b, Xét tam giác BCD có 

BA là đường cao 

lại có AD = AC => A là trung điểm 

=> BA là đường trung tuyến 

Vậy tam giác BCD cân tại B 

7 tháng 3 2022

a. Ta có:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow5^2=3^2+4^2\)

\(\Leftrightarrow25=25\left(đúng\right)\)
\(\Rightarrow\) Tam giác ABC vuông tại A

b.Xét tam giác CBA và tam giác DAB, có:

AD = AC ( gt )

góc BAC = góc DAB ( = 90 độ )

AB: cạnh chung

Vậy tam giác CBA = tam giác DAB ( c.g.c )

=> góc BCA = góc BDA ( 2 góc tương ứng )

=> Tam giác BCD cân tại B

c: Xét tứ giác BHDM có

A là trung điểm chung của BD và HM

=>BHDM là hình bình hành

=>BH//DM

ta có:BH//DM

H\(\in\)BC

Do đó: DM//BC

d: Ta có: ΔCBD cân tại C

mà CA là đường cao

nên CA là phân giác của góc BCD

Xét ΔCNA vuông tại N và ΔCHA vuông tại H có

CA chung

\(\widehat{NCA}=\widehat{HCA}\)

Do đó: ΔCNA=ΔCHA

=>NA=AH

mà AH=1/2HM

nên NA=1/2HM

Xét ΔNHM có

NA là đường trung tuyến

\(NA=\dfrac{1}{2}HM\)

Do đó: ΔNHM vuông tại N

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CB=CD

Xét ΔCDE và ΔCBE có

CD=CB

góc DCE=góc BCE

CE chung

=>ΔCDE=ΔCBE

c: ΔCBD có CB=CD nên ΔCBD cân tại C