Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABH và ACK có:
AH=AK(gt)
AB=AC(tam giác ABC cân)
Â:góc chung
=> ABH=ACK
=> Góc ABH= Góc ACK
=> Góc OBC= Góc OCB
=> OBC cân tại O
a, Xét \(\Delta ABE\) và \(\Delta ACD\) có:
AE = AD
Góc A chung
AB = AC ( \(\Delta ABC\) cân )
Vậy: \(\Delta ABE\) = \(\Delta ACD\) (c.g.c)
\(\Rightarrow BE=CD\)
b, Vì \(\Delta ABE\) = \(\Delta ACD\)
\(\Rightarrow\) góc ABC = góc ACD; góc ADC = góc AEB
Vì góc ADC = góc AEB
\(\Rightarrow\) góc BDC = góc CEB ( kề bù )
Vì AB = AC; AD = AE
\(\Rightarrow\) AB - AD = AC - AE
\(\Rightarrow\)BD = CE
Xét \(\Delta BMD\) và \(\Delta CME\) có:
góc BDC = góc CEB
BD = CE
góc ABC = góc ACD
Vậy: \(\Delta BMD\) = \(\Delta CME\) ( g.c.g )
c, Vì \(\Delta BMD\) = \(\Delta CME\)
\(\Rightarrow\) DM = ME
Xét \(\Delta AMD\) và \(\Delta AME\) có:
AM chung
AD = AE
DM = ME
Vậy: \(\Delta AMD\) = \(\Delta AME\) ( g.c.g )
\(\Rightarrow\) góc MAD = góc MAE
Vậy: AM là phân giác góc BAC
d, Vì \(\Delta ADE\) cân tại A ( AD = AE )
\(\Rightarrow ADE=\left(180-BAC\div2\right)\)
Vì \(\Delta ABC\) cân tại A
\(\Rightarrow ABC=\left(180-BAC\div2\right)\)
mà \(ADE=\left(180-BAC\div2\right)\)
\(\Rightarrow\)góc ABC = góc ADE
mà 2 góc ở vị trí so le trong do AB cắt DE và BC
Vậy DE // BC
góc MAD+góc MDA=90 độ
góc MBH=góc KBD=90 độ-góc MDA
=>góc MAD=góc MBH
Xét ΔKBC và ΔHCB có
KB=HC
\(\widehat{KBC}=\widehat{HCB}\)
BC chung
Do đó: ΔKBC=ΔHCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOBC cân tại O
A B C M D E K H N
a) Có: AB=AC
\(\Rightarrow\Delta ABC\) là tam giác cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ABD}+\widehat{ABC}=180^o\) (kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^o\)(kề bù)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
em viết đề rõ cái đi
may khong co dau nhe