Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có AD là phân giác của góc BAC ( D∈∈BC). Từ D kẻ các đường thẳng song song với AB và AC, chúng cắt AB, AC tại E và F.
a) Chứng minh: Tứ giác AEDF là hình thoi.
b) Trên tia AB lấy điểm G sao cho F là trung điểm của AG. Chứng minh: Tứ giác EFGD là hình bình hành.
c) Gọi I là điểm đối xứng của D qua F, tia IA cắt tỉa ĐỂ tại K. Gọi O là giao điểm của AD và EF. Chứng minh: G đối xứng với K qua O.
đ) Tìm điều kiện của tam giác ABC để tứ giác ADGI là hình vuông.
a) Ta có: M là trung điểm của BC(gt)
nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)
Ta có: ΔABC cân tại A(gt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)
\(\Rightarrow AM\perp BC\)
Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AM^2=AB^2-BM^2=5^2-3^2=16\)
hay AM=4(cm)
Xét ΔABC có AM là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AM\cdot BC}{2}=\dfrac{4\cdot6}{2}=\dfrac{24}{2}=12cm^2\)
Vậy: Diện tích tam giác ABC là 12cm2
b) Xét tứ giác AMCN có
O là trung điểm của đường chéo AC(gt)
O là trung điểm của đường chéo MN(M và N đối xứng nhau qua O)
Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(\(AM\perp BC\))
nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Hình chữ nhật AMCN trở thành hình vuông khi AM=CM
mà \(CM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)
Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
\(AM=\dfrac{BC}{2}\)(cmt)
Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(\widehat{BAC}=90^0\)
Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì AMCN là hình vuông
\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao
Vì D là trung điểm AC và MN nên AMCN là hình bình hành
Mà \(AM\bot BC\Rightarrow AM\bot MC\)
Do đó: AMCN là hình chữ nhật
\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)
Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)
Vậy ABMN là hình bình hành
\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)
Áp dụng PTG vào tam giác ABM vuông M
\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)
Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)
a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).
\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.
Xét tứ giác AMCN có:
+ D là trung điểm của MN (N đối xứng với M qua D).
+ D là trung điểm của AC (gt).
\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).
Lại có: \(\widehat{AMC}\) = 90o (cmt).
\(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).
b) Tứ giác AMCN là hình chữ nhật (cmt).
\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).
\(\Rightarrow\) AN // BM.
Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.
\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.
Mà AN = MC (Tứ giác AMCN là hình chữ nhật).
\(\Rightarrow\) BM = MC = AN.
Xét tứ giác ABMN có:
+ BM = AN (cmt).
+ BM // AN (cmt).
\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).
c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).
Xét tam giác AMB vuông tại M có:
AB2 = AM2 + BM2 (Định lý Pytago).
Thay số: 52 = AM2 + 32.
\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).
Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).
Tự vẽ hình ...
a, Xét tứ giác ANCM có:
AI = CIMI = NI ( đối xứng)
Mà: AC cắt MN tai J
Nên: tứ giác ANCM là hình bình hành
Xét hình bình hành ANCM cógóc AMC = 900
=> hình bình hành ANCM là hình chữ nhật
b, Xét: Tam giác ABC cân tại A có: AM là đường trung tuyến
=> AM là đường cao
\(\widehat{AMB}=\widehat{AMC}=90^0\)
Xét tam giác AMB có góc AMB = 900
MK là đường trung tuyến ứng vs cạnh huyền AB
\(\Rightarrow MK=\frac{1}{2}AB\)(1)
Mà: K là trung điểm của AB
\(\Rightarrow KA=KB=\frac{1}{2}AB\)(2)
Từ (1), (2)=> MK = AK = BK (3)
Chứng minh tương tự ta có :
\(MI=AI=CI=\frac{1}{2}AC\)(4)
Mà: AB = AC( tam giác ABC cân) (5)
Từ (3), (4),(5)
=> MI = AI = CI = MK = AK = BK
Xét tứ giác AKMI có:AK = KM = MI = AI
=> tứ giác AKMI là hình thoi
c, Ta có : AMCN là HCN
Để AMON là hình vuông thì phải cần thêm điều kiện là MI tia phân giác của góc M
hc tốt ##
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a. Xét tam giác ABC có BM=MC; AI=IC
=> IM là đường trung bình của tam giác ABC => IM//AB; IM=1/2AB=AK
Xét tứ giác AKMI có IM//AK; IM=AK
=> AKMI là hbh
Do AB=AC=> 1/2AB=1/2AC=> AK=AI
Xét hbh AKMI có AK=AI
=> AKMI là hình thoi
b. •Xét tứ giác AMCN có AC, MN là 2 đường chéo cắt nhau tại I và AI=IC MI=IN
=> AMCN là hbh
Do tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao
=> AMC=90*
Hbh AMCN có AMC=90*
=> AMCN là hcn
• Xét tam giác ABC có AK=BK; BM=MC
=> KM là đường trung bình của tam giác ABC => KM//AC hay KM//IC; KM=1/2AC=IC
Xét tứ giác MKIC có KM//IC; KM=IC
=> MKIC là hbh
c. Do AMCN là hcn nên NAM=90*; AN=MC
Từ NAM=90*=> ANvgAM mà BMvgAM
=> AN//BM
Từ AN=MC mà MC=BM => AN=BM
Xét tứ giác ABMN có AN=BM; AN//BM
=> ABMN là hbh => AM và BN cắt nhau tại trung điểm mỗi đoạn
Mà E là trung điểm của AM
=> E là trung điểm của BN
d. Để AMCN là hình vuông thì AC vg MN
Xét tam giác vuông AMC có MI vừa là trung tuyến vưaf là đường cao
=> AMC vuông cân tại M => ACM=45*=ABM
=> tam giác ABC vuông cân tại A