K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

a, 

+) Cách 1: 

Xét △ABC cân tại A (AB = AC) có: AH là phân giác BAC 

=> AH là đường trung trực => ∠AHB = 90o và H là trung điểm BC => HB = HC

+) Cách 2:

Xét △BAH và △CAH

Có: AB = AC (gt)

  ∠BAH = ∠CAH (gt)

   AH là cạnh chung

=> △BAH = △CAH (c.g.c)

=> BH = CH (2 cạnh tương ứng)

P/s: chọn 1 trong 2 cách xong làm tiếp 

Ta có: HB = HC = BC : 2 = 8 : 2 = 4 (cm)

Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2 = 52 - 42 = 9

=> AH = 3 (cm)

b, 

+) Cách 1: 

Xét △MAH vuông tại M và △NAH vuông tại N

Có: AH là cạnh chung

     ∠MAH = ∠NAH (gt)

=> △MAH = △NAH (cg-gn)

=> AM = AN (2 cạnh tương ứng) => A thuộc đường trung trực của MN

và MH = NH (2 cạnh tương ứng) => H thuộc đường trung trực của MN

=> AH là đường trung trực của MN

+) Cách 2: Gọi AH ∩ MN = { I }

Xét △MAH vuông tại M và △NAH vuông tại N

Có: AH là cạnh chung

     ∠MAH = ∠NAH (gt)

=> △MAH = △NAH (cg-gn)

=> AM = AN (2 cạnh tương ứng)

Xét △MAI và △NAI 

Có: AM = AN (cmt)

   ∠MAI = ∠NAI (gt)

    AI là cạnh chung

=> △MAI = △NAI (c.g.c)

=> MI = NI (2 cạnh tương ứng) => I là trung điểm MN  

và ∠MIA = ∠NIA (2 góc tương ứng)

Mà ∠MIA + ∠NIA = 180o (2 góc kề bù)

=> ∠MIA = ∠NIA = 180o : 2 = 90o

=> AI ⊥ MN

Mà I là trung điểm MN 

=> AI là đường trung trực MN

=> AH là đường trung trực MN  ( AH ∩ MN = { I } )

P/s: chọn 1 trong 2 cách xong làm tiếp 

Vì AM = AN (cmt) => △AMN cân tại A => ∠AMN = (180o - ∠MAN) : 2

Vì △ABC cân tại A => ∠ABC = (180o - ∠BAC) : 2

=> ∠AMN = ∠ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> MN // BC (dhnb)

c, Xét △MAH vuông tại M có: AH > AM (quan hệ giữa đường xiên và đường vuông góc)

Xét △MBH vuông tại M có: BH > MB (quan hệ giữa hình chiếu và đường xiên)

Ta có: 2AH + BC = 2AH + 2BH  (BH = BC : 2  => 2BH = BC)

=> 2AH + 2BH > 2AM + 2MB

=> 2AH + BC > 2(AM + MB) = 2AB

6 tháng 5 2016

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AH: chung

                                     AB=AC (gt)

=>Tam giác ABH=tam giác ACH (cạnh huyền-cạnh góc vuông)

  =>HB=HC (2 cạnh tương ứng)

b)Vì HB=HC (câu a) => HB=HC=BC:2=8:2=4 (cm)

Xét tam giác ABH vuông tại H có: AB2 = AH2 + BH2 (định lý Py-ta-go)

                                                  52    = AH2 + 42

                                                                  AH2 = 52 - 42 = 25-16=9

                                                 AH=\(\sqrt{9}=3\)

c) Vì tam giác ABH=tam giác ACH (câu a) => góc BAH=góc CAH (2 góc tương ứng)

Xét tam giác ADH vuông tại D và tam giác AEH vuông tại E có:

                                        AH: chung

                                        góc BAH=góc CAH (cmt)

=> Tam giác ADH=tam giác AEH (cạnh huyền-góc nhọn)

  =>HD=HE (2 cạnh tương ứng)

  =>tam giác DHE cân tại H

d) Tam giác EHC vuông tại E có HC là cạnh huyền =>HC là cạnh lớn nhất trong tam giác EHC hay HC>HE

Mà HE=HD (cmt) => HC>HD

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

6 tháng 2 2022

a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC

b.áp dụng định lý pitago ta có:

\(AB^2=AH^2+HB^2\)

\(5^2=AH^2+\left(8:2\right)^2\)

\(AH=\sqrt{5^2-4^2}=3cm\)

c.Xét tam giác vuông BHD và tam giác vuông CHE, có:

BH = CH ( cmt )

góc B = góc C ( ABC cân )

Vậy tam giác vuông BHD = tam giác vuông CHE 

=> HD = HE 

=> HDE cân tại H

d.ta có AB = AD + DB

           AC = AE + EC

Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )

=> AD = AE 

=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )

Chúc bạn học tốt !!!!

2 tháng 5 2015

Hình bạn tự vẽ nha !
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
   AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
   AH mũ 2 + 4 mũ 2    = 5 mũ 2 
   AH mũ 2 + 16           = 25
   AH mũ 2                  = 25 - 16
   AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm
c) Hình như bạn viết thiếu đề ròi 
d) Mình bó tay :P

17 tháng 3 2020

Xét tam giác ABH và tam giác ACH

                    AB=AC(GT)

                    ^AHB=^AHC=90o

                    ^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)

=>  tam giác ABH = tam giác ACH

=> HB=HC ( 2c tứ)

có HB+HC=BC 

mà BC=8 cm

HB=HC

=> HB=HC=4cm

Xét tam giác ABH : ^H=90o

=> AB2+AH2+BH2(đ/lý pythagoras)

thay số ta có :

52=AH2+42

25-16=AH2

9=AH2

3=AH

c)Xét tam giác BDH và tam giác ECH

^BDH= ^ HEC =90o

BH=CH

^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)

=> tam giác BDH = tam giác ECH

=> DH=EH

=> HDE CÂN TẠI H (Đ/N)

d) qua tia đối của DH ; kẻ HK sao cho HK= DH

CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền)  => HK > HC

mà HD=HK 

=> HD>HC

18 tháng 6 2021

a)Ta có:AB=AC

=>ΔABC cân tại A

=>AB=AC và ∠ABC=∠ACB

xét ΔABH VÀ ΔACH có:

AH chung

AB=AC(cmt)

∠ABC=∠ACB(cmt)

=>ΔABH = ΔACH(ch-gn)

=>HB=HC(2 cạnh tg ứng)

 

18 tháng 6 2021

b)Ta có:BH+HC=BC

MÀ BH=HC(cma)

=>BH=HC=\(\dfrac{BC}{2}\)=\(\dfrac{8}{2}\)=4(cm)

Xét ΔABH có:∠AHB=90\(^o\)

=>AH\(^2\)+BH\(^2\)=AB\(^2\)(pytago)

=>AH\(^2\)+4\(^2\)   =5\(^2\)

=>AH=9(AH>0)

Vậy AH=9 cm(đpcm)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

18 tháng 4

Bài 5:

a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC.

Vì ∆ABC cân tại A nên:

  • AB = AC (1)
  • Góc ABC = góc ACB (2)

Xét ∆AHB và ∆AHC có:

  • Cạnh AH chung
  • AB = AC (từ (1))
  • Góc AHB = góc AHC (từ (2) và AH ⊥ BC)

Vậy ∆AHB = ∆AHC (c.g.c)

Suy ra:

  • HB = HC
  • Góc BAH = góc CAH

Do đó, AH là tia phân giác của góc BAC.

b) Chứng minh AH vuông góc với MN

Xét ∆AHM và ∆AHN có:

  • AH chung
  • Góc AHM = góc AHN (= 90 độ)
  • AM = AN (vì AH là tia phân giác của góc BAC)

Vậy ∆AHM = ∆AHN (cạnh huyền - góc nhọn)

Suy ra: HM = HN

Do đó, AH là đường trung trực của MN.

Vậy AH vuông góc với MN.

c) Chứng minh P, Q, K thẳng hàng

Vì H là trung điểm của MP nên HP = HM.

Xét ∆HMP và ∆HNP có:

  • HP = HN (cmt)
  • MH = NH (cmt)
  • NP chung

Vậy ∆HMP = ∆HNP (c.c.c)

Suy ra: góc MHP = góc NHP = 90 độ.

Do đó, PQ ⊥ MH và PQ ⊥ NH.

Mà AH ⊥ MN nên PQ // AH (1)

Ta lại có: K ∈ MN và AH ⊥ MN nên K ∈ PQ (2)

Từ (1) và (2) suy ra: PQ đi qua điểm K.

Vậy P, Q, K thẳng hàng.