Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo câu a ở link này:
Câu hỏi của Nguyễn Tiến Vững - Toán lớp 7 - Học toán với OnlineMath
Tự vẽ hình và ghi GT, KL
CM :
a) Xét \(\Delta ABM\)và \(\Delta CNM\)
Có AM = CM (gt)
\(\widehat{AMC}=\widehat{CMN}\)(đối đỉnh )
MB = NM (gt)
=> \(\Delta ABM=\Delta CNM\)(c.g.c)
=> góc NCM = góc MAB ( hai cạnh tương ứng )
Mà góc MAB = 900 (gt) => góc NCM = 900
=> CN \(\perp\)AC
và CN = AB (hai cạnh tương ứng)
b) Xét tam giác AMN và tam giác CMB
có MN = MB (gt)
góc NMA = góc CMB (đối đỉnh)
CM = AM (gt)
=> tam giác AMN = tam giác CMB (c.g.c)
=> AN = BC ( hai cạnh tương ứng)
=> góc NAM = góc BCM ( hai góc tương ứng)
Mà góc NAM và góc BCM ở vị trí so le trong
=> AN // BC
CM :
a) Xét ΔABMvà ΔCNM
Có AM = CM (gt)
^AMC=^CMN(đối đỉnh )
MB = NM (gt)
=> ΔABM=ΔCNM(c.g.c)
=> góc NCM = góc MAB ( hai cạnh tương ứng )
Mà góc MAB = 900 (gt) => góc NCM = 900
=> CN ⊥AC
và CN = AB (hai cạnh tương ứng)
b) Xét tam giác AMN và tam giác CMB
có MN = MB (gt)
góc NMA = góc CMB (đối đỉnh)
CM = AM (gt)
=> tam giác AMN = tam giác CMB (c.g.c)
=> AN = BC ( hai cạnh tương ứng)
=> góc NAM = góc BCM ( hai góc tương ứng)
Mà góc NAM và góc BCM ở vị trí so le trong
=> AN // BC
A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
A B C D H M K P
Giải : Kẻ DP vuông góc với BM
Ta có : DP // AC vì cùng vuông góc với BM
=> góc PDB = góc C
Mà góc B = góc C ( gt ) => góc PDB = góc B
Xét tam giác vuông HBD và tam giác vuông PDB có :
cạnh BD (chung )
góc HBD = góc PDB (cmt)
=> tam giác HBD = tam giác PDB ( ch-gn )
=> HD = PB
Ta có : PD // MK ( cmt ) và PM // DK ( cùng vuông góc với MK )
=> PM = DK ( tính chất đoạn chắn )
=> DH + DK = PB + PM = BM ( đpcm )
a) Xét tg ABH và ACK có :
AB=AC(tg ABC cân tại A)
\(\widehat{A}-chung\)
\(\widehat{AHB}=\widehat{AKC}=90^o\)
=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)
b) Do tg ABH=ACK (cmt)
\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
=> Tg OBC cân tại O
=> OB=OC (đccm)
c) Do : AB=AC (tg ABC cân tại A)
MB=NC(gt)
=> AB+BM=AC+CN
=> AM=AN
=> Tg AMN cân tại A
\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
- Do tg ABH=ACK (cmt)
=> AK=AH
=> Tg AKH cân tại A
\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)
Mà chúng là 2 góc đồng vị
=> KH//MN (đccm)
#H