K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 8 2022
a: \(cotC=tanB=\sqrt{2}\)
\(tanC=\dfrac{1}{\sqrt{2}}\)
=>góc C=45 độ
\(sinB=cosB=\dfrac{\sqrt{2}}{2}\)
b: Ta có: ΔABC vuông tại A
mà góc C=45 độ
nên ΔABC vuông cân tại A
=>AH=BH=CH=2 căn 3
=>BC=4 căn 3
\(AB=\sqrt{2\sqrt{3}\cdot4\sqrt{3}}=\sqrt{24}=2\sqrt{6}\left(cm\right)\)
\(AC=AB=2\sqrt{6}\left(cm\right)\)
Tam giác ABC vuông tại A, đường cao AH:
nêN\(\hept{\begin{cases}AB^2=HB.BC\\AC^2=HC.BC\end{cases}}\hept{\begin{cases}\\\end{cases}\frac{AB^2}{AC^2}=\frac{HB.BC}{HC.BC}=\frac{HB}{HC}\Leftrightarrow\frac{HB}{HC}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2}\)
Vì AD là đường phân giác tam giác ABC:
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}=\frac{36}{60}=\frac{3}{5}\)
\(\Rightarrow\frac{BH}{CH}=\left(\frac{AB}{AC}\right)^2=\left(\frac{3}{5}\right)^2=\frac{9}{25}\)
B. Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{HB}{HC}=\frac{9}{25}\)
\(\Rightarrow\frac{BH}{9}=\frac{CH}{25}=\frac{BH+CH}{9+25}=\frac{BC}{34}=\frac{BD+DC}{34}=\frac{15+25}{34}=\frac{40}{34}=\frac{20}{17}\)
\(\Rightarrow BH=\frac{9.20}{17}=\frac{180}{17}cm\)
\(\Rightarrow CH=40-\frac{180}{17}=\frac{500}{17}cm\)
\(\Delta ABC\)vuông tại A. đường cao AH:
\(AH^2=BH.CH\)
\(\Leftrightarrow AH=\sqrt{BH.HC}\)
\(\Leftrightarrow AH=\sqrt{\frac{180}{17}.\frac{500}{17}}\)
\(\Leftrightarrow AH=\sqrt{\frac{90000}{289}}\)
\(\Leftrightarrow AH=\frac{300}{17}cm\)
Bạn xem coi đúng không...