Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M
a)Xét ΔAMB và ΔDMC có:
AD=DM(gt)
\(\widehat{AMB}=\widehat{MDC}\left(đđ\right)\)
BM=MC(gt)
=> ΔAMB=ΔDMC (c.g.c)
b) Vì: ΔAMB=ΔDMC(cmt)
=> \(\widehat{ABM}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong
=> AB//DC
Mà: \(AB\perp AC\left(gt\right)\)
=> \(DC\perp AC\)
c)Vì: ΔABC vuông tại A(gt)
Mà AM là đường trung tuyến ứng vs cạnh BC
=> \(AM=\frac{1}{2}BC\)
Cách lớp 8:
Bạn phải nói là AM là đường trung tuyến ứng với cạnh huyền ms đúng chứ
a b c m d 1 2 3 4 e f
Xét T/G ABC và DCM
CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)
Có T/G ABC=DCM -> Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC
C) Xét T/G BFM và CEM có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) -> BFM=CEM(g.c.g)
-> ME=MF -> M là trung điểm EF
A B C M D E F
a, Xét t/g ABM và t/g DCM có:
AM=DM(gt)
BM=CM(gt)
góc AMB=góc DMC (đối đỉnh)
=>t/g ABM=t/g DCM (c.g.c)
b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)
Mà 2 góc này là cặp góc so le trong
=> AB//DC
c, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
BM=CN(gt)
góc BME = góc CMF (đối đỉnh)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>EM=FM (2 cạnh t/ứ)
=>M là trung điểm của EF
B D A C
Hình hơi xấu xíu :vv
a) Xét t.giác AMB và t.giác DMC có :
MA = MD ( gt )
\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)
MB = MC (gt)
Vậy t.giác AMB = t.giác DMC (c.g.c)
b) Do : t.giác AMB = t.giác DMC ( cmt )
=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)
Xét t.giác ABC và t.giác DCB có :
BC : cạnh chung
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
AB = DC ( cmt )
Vậy t.giác ABC = t.giác DCB ( c.g.c )
=> AC = BD
\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.
=> AC // BD
Vì : t.giác ABC = t.giác DCB ( cmt )
=> \(\widehat{BAC}=\widehat{BDC}=90^0\)
Hình tự vẽ nhé:
a) Xét \(\Delta MAC\)và \(\Delta MDB\):
MC=MB(gt)
MA=MD(gt)
\(\widehat{AMC}=\widehat{DMB}\)(đối đỉnh)
\(\Rightarrow\Delta MAC=\Delta MBD\left(c-g-c\right)\)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) Xét 2 \(\Delta\) \(AMB\) và \(DMC\) có:
\(AM=DM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MB=MC\) (vì M là trung điểm của \(BC\))
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(DC\left(đpcm\right).\)
Chúc bạn học tốt!