Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải:
a,gọi H là giao điểm của BD và AE
xét tam giác ABH và tam giác EBH có:
B1=B2. cạnh BH chung, góc AHB= góc EHB=90 độ
=> tam giác ABH= tam giác EBH(g.c.g)
=>BA=BE
b, xét tam giác ABD và tam giác EBD có:
BA=BE, B1=B2, cạnh BD chung
=>tam giác ABD= tam giác EBD(c.g.c)
=>góc A=góc BED=90 độ
=> tam giác BED vuông tại E
a. Xét hai tam giác vuông ABD và tam giác vuông MBD có
góc BAD = góc BMD = 90độ
cạnh BD chung
góc ABD = góc MBD
Do đó ; tam giác ABD= tam giác MBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)AB = MB
b.Xét tam giác ABC ,có góc A = 90độ , góc C=30 độ
\(\Rightarrow\)góc B = 60 độ ,mà BD là tia phân giác của góc ABC
\(\Rightarrow\)\(\widehat{ABD}=\widehat{DBC}=30^O\)mà \(\widehat{C}=30^o\)\(\Rightarrow\widehat{DBC}=\widehat{DCB}=30^O\)
\(\Rightarrow\Delta BCD\)cân tại D
Ta có \(\Delta BDC\)cân tại D,\(DM\perp BC\)
\(\Rightarrow\)DM là đường trung tuyến của tam giác BDC
\(\Rightarrow\)BM=MC\(\Rightarrow\)M là trung điểm của BC
c,Xét tam giác ADE và tam giác MDC có
\(\widehat{ADE}=\widehat{MDC}\)\((\)đối đỉnh\()\)
\(\widehat{DAE}=\widehat{DMC}=90^O\)
AD=DM\((\)Từ tam giác BAD =tam giác BMD\()\)
Do đó \(\Delta ADE=\Delta MDC\)\((g.c.g)\)
\(\Rightarrow AE=MC\)\(\Rightarrow AE=BA=BM=MC\)
\(\Rightarrow BE=BC\)
\(Xét\Delta BEF\)và \(\Delta BCFcó\)
góc EBF = góc CBF
BF cạnh chung
BE=BC
Do đó tam giác BEF =tam giác BCF [c.g.c]
\(\Rightarrow\widehat{BFE}=\widehat{BFC}=90^O\)
\(\Rightarrow\widehat{EFC}=180^O\)\(\Rightarrow\)Ba điểm C,F,E thẳng hàng
Chúc bạn học tốt
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân