K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

​Cho tam giác ABC vuông tại A có góc C = 30 độ,Tia phân giác góc B cắt BC tại E,Từ E vẽ EH vuông góc với BC,So sánh các cạnh của tam giác ABC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Nek bn

11 tháng 2 2020

Sao vậy ?

6 tháng 2 2020

Bạn tự vẽ hình nha

Xét hai \(\Delta\) vuông ABE và HBE có:

BE là cạnh huyền chung

\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

Vậy \(\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) ΔABC vuông tại A

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)

\(\widehat{ABC}=60^o\)

\(\Rightarrow\widehat{ACB}=30^o\)

ΔEHC vuông tại H

\(\Rightarrow\widehat{HEC}+\widehat{HCE}=90^o\)

\(\widehat{HCE}=30^o\)

\(\Rightarrow\widehat{HEC}=60^o\left(1\right)\)

Ta lại có : \(\widehat{ABE}=\widehat{EBH}=\frac{\widehat{ABC}}{2}=\frac{60^o}{2}=30^o\)

ΔBEH vuông tại H

\(\widehat{EBH}+\widehat{BEH}=90^o\)

\(\widehat{EBH}=30^o\)

\(\Rightarrow\widehat{BEH}=60^o\)

Vì HK // BE

\(\Rightarrow\widehat{BEH}=\widehat{EHK}\) (2 góc so le trong bằng nhau)

\(\widehat{BEH}=60^o\)

nên \(\widehat{EHK}=60^o\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)ΔEHK là tam giác đều

c) Xét hai tam giác vuông AEM và HEC có:

AE = HE (ΔABE=ΔHBE)

\(\widehat{AEM}=\widehat{HEC}\) (2 góc đối đỉnh)

Vậy: ΔAEM=ΔHEC(cgv−gn)

\(\Rightarrow\)AM = HC (hai cạnh tương ứng)

Ta có: BM = BA + AM

BC = BH + HC

Mà BA = BH (ΔABE=ΔHBE)

AM = HC (cmt)

BM = BC

ΔBMC cân tại B

BN là đường phân giác đồng thời là đường trung tuyến của \(\Delta\) BMC

Nên NM = NC

7 tháng 2 2020

tự vẽ hình bn nha

a) vì BE là p/g của góc B =>góc B1=góc B2

xét tam giác ABE vg tại A và tam giác HBE vg tại H có :

BE chung

góc B1=góc B2( cmt)

=> tam giác ABE = tam giác HBE ( ch-gn)

nhớ tick cho mk

7 tháng 3 2021

a) xét ΔΔvuông ABE vàΔΔvuông HBE có:

BE là cạnh chung

gcABE=gcHBE(BE là tia p.g của gc ABC)

=> tg ABE=tgHBE(cạnh huyền góc nhọn)

b) theo câu a: tg ABE= tg HBE (cmt)=>AB=BH (1)

trong tg vuông ABC có: gc B =60o=> gc C=30o

=> AB=1212 BC(2)

=> BH = BC2BC2mà H thuộc BC => H là trung điểm BC

xét tg BCE có:H là TĐ của BC(cmt)

HK//BE(gt)=> K là trung điểm EC

xét tg vuông HEC có: HK là đường trung tuyến ứng vs cạnh huyền

=> HK=EK= EC2EC2=> tg HEK cân ở K

lại có:gc EKH = gc ACB+gc KHC( góc ngoài cuả tgHKC)

gc KHC=gc EBC=30o( đồng vị ,HK//BE)

do đó gc EHK=gc ACB+gc EBC=30+30=60o

tam giác cân có 1 góc = 60 o là tam giác đều

c)(nhiều cách lúm)

trong tg vuông HBM: gc HBM= 60o=>gc HMB= 30o

=>BH=12BMBH=12BMmà BH= 12BC12BC(cmt )

=> BM=BC=> tg BMC cân ở B

BN là đường p.g của gcMBC

=> BN đồng thời là đường trung trực của tgMBC hay của cạnh MC

MK cần bạn vẽ hình để giải được câu b và c nhé 

Ta có AB vuông AC; EK vuông AC Nên AB song song với EK

=> goc BAE= goc AEK (1) ( hai góc so le trong)

Lại có góc BAE= góc BEA (2) ( do tam giác ABM= tam giác EBM chứng minh ở câu a)

 (1)(2)=> góc AEB = góc AEK

c.

Xét \(\Delta AEH\)và \(\Delta AEK\)

\(H=K\)

Chung \(AE\)

\(\Rightarrow\Delta AEH=\Delta AEK\left(ch-gn\right)\Rightarrow\hept{\begin{cases}AH=AK\\HAE=KAE\end{cases}}\)

Gọi giao điểm giữa HK và AE là N

Xét \(\Delta AHN\)và \(\Delta AKN\)

\(AH=AK\left(cmt\right)\)

\(HAN=KAN\left(cmt\right)\)

Chung \(AN\)

\(\Rightarrow\Delta AHN=\Delta AKN\left(c.g.c\right)\Rightarrow AMH=AMK\Rightarrow2AMH=AMK+AMH=180\Rightarrow AMH=90\)

Vậy \(AE\perp HK\)tại \(N\)

5 tháng 2 2018

Trả lời giúp mk nha. Mk đang cần gấp

1 tháng 2 2019

Tia phân giác góc B sao cắt BC bạn

a: Xét ΔABC có \(\widehat{C}< \widehat{ABC}< \widehat{BAC}\)

 nên AB<AC<BC

b: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đó: ΔABE=ΔHBE

c: Xét ΔEHA có EA=EH

nên ΔEAH cân tại E