Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAM có CA=CM
nên ΔCAM cân tại C
=>\(\widehat{CAM}=\widehat{CMA}\)
b: \(\widehat{CAM}+\widehat{MAN}=90^0\)
=>\(\widehat{CMA}+\widehat{MAN}=90^0\)
c: \(\widehat{BAM}+\widehat{CAM}=90^0\)
\(\widehat{CMA}+\widehat{HAM}=90^0\)
DO đó: \(\widehat{BAM}=\widehat{HAM}\)
hay AM là tia phân giác của góc BAH
d: Xét ΔHAM và ΔNAM có
AH=AN
\(\widehat{HAM}=\widehat{NAM}\)
AM chung
DO đó: ΔHAM=ΔNAM
Suy ra: \(\widehat{AHM}=\widehat{ANM}=90^0\)
=>MN\(\perp\)AB
Bài 1:
A' B' C' A B C H H'
Xét tam giác ABC và tam giác A'B'C' đều ta có:
\(\widehat{ABC}=\widehat{A'B'C'}=60^o\)(theo tính chất của tam giác đều)
\(\Rightarrow\widehat{HAB}=\widehat{H'A'B'}\)
Xét tam giác \(ABH\) và tam giác \(A'B'H'\) ta có:
\(\widehat{AHB}=\widehat{A'H'B'}\left(=90^o\right);AH=A'H'\left(gt\right);\widehat{HAB}=\widehat{H'A'B'}\left(cmt\right)\)
Do đó tam giác ABH= tam giác A'B'H'(g.c.g)
=> AB=A'B'=> AB=AC=CB=A'B'=A'C'=B'C'(theo tính chất của tam giác đều)
Xét tam giác ABC và tam giác A'B'C' ta có:
\(AB=A'B'\left(cmt\right);\widehat{ABC}=\widehat{A'B'C'}\left(=60^o\right);BC=B'C'\left(cmt\right)\)
Do đó tam giác ABC= tam giác A'B'C'(c.g.c)(đpcm)
Xong =))
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
A B C D E M N 1 1 2 2 3 3
Bài làm
a) Vì tam giác ABC cân tại A
=> Góc ABC = góc ACB ( 2 góc ở đáy )
Xét tam giác ABC ta có:
A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )
hay ABC + ACB = 180o - A
=> 2ABC = 180o - A ( 1 )
Ta có: AB + BD = AD
AC + CE = AE
Mà AB = AC ( giả thiết )
BD = CE ( giả thiết )
=> AD = AE
=> Tam giác ADE cân tại A
=> Góc D = góc E
Xét tam giác ADE
Ta có: A + D + E = 180o
hay D + E = 180o - A
=> 2D = 180o - A ( 2 )
Từ ( 1 ) và( 2 ) => 2D = 2ABC
=> D = ABC
Mà góc D và góc ABC ở vị trí đồng vị
=> DE // BC ( đpcm )
b) Ta có: B1 = B2 ( 2 góc đối đỉnh )
C1 = C2 ( 2 góc đối đỉnh )
Mà B1 = C1 ( tam giác ABC cân tại A )
=> B2 = C2
Xét tam giác MBD và tam giác NCE
có: Góc BMD = góc CNE = 90o
cạnh huyền: BD = CE ( giả thiết )
Góc nhọn: B2 = C2 ( chứng minh trên )
=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )
=> MB = NC. ( 2 cạnh tương ứng )
Ta có: MB + BC = MC
NC + BC = NB
Mà MB = NC ( chứng minh trên )
Cạnh BC chung
=> MC = NB
Xét tam giác ACM và tam giác ABN
Có: AB = AC ( giả thiết )
B1 = C1 ( Tam giác ABC cân tại A )
MC = NB ( chứng minh trên )
=> Tam giác ACM = tam giác ABN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
=> Tam giác AMN cân tại A ( đpcm )
~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~
a) Vì AB=AC mà BD=CE
Suy ra : AB+BD=AC+CE
Suy ra AD= AE
Suy ra tam giác DAE cân tại A
Suy ra \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)
Ta có tam giác ABC cân tại A
suy ra \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)
Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)
mà hai góc ở vị trí đồng vị . Suy ra \(DE//BC\)
A B C H I E D
ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )
và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)
suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )
b) xét \(\Delta IAH \)và \(\Delta ICE\)có
IA = IC (gt)
IH =IE (gt)
góc HIA = góc EIC ( đối đỉnh )
do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)
suy ra AH = EC ( 2 cạnh tương ứng )
và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )
xét \(\Delta HAC\)và \(\Delta ECA\)có
AH = EC (cmt)
góc HAI = góc ECA (cmt)
AC là cạnh chung
do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)
suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)
mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)
hay \(CE⊥AE\)
a: Xét ΔCAM có CA=CM
nen ΔCAM cân tại C
=>\(\widehat{CAM}=\widehat{CMA}\)
b: \(\widehat{CAM}+\widehat{MAN}=90^0\)
nên \(\widehat{CMA}+\widehat{MAN}=90^0\)
c: Ta có: \(\widehat{CMA}+\widehat{MAN}=90^0\)
\(\widehat{CAM}+\widehat{BAM}=90^0\)
mà \(\widehat{CAM}=\widehat{CMA}\)
nên \(\widehat{MAN}=\widehat{HAM}\)
hay AM là tia phân giác của góc BAH
d: Xét ΔAHM và ΔANM có
AH=AN
\(\widehat{HAM}=\widehat{NAM}\)
AM chung
Do đó: ΔAHM=ΔANM
Suy ra: \(\widehat{AHM}=\widehat{ANM}=90^0\)
=>MN\(\perp\)AB