Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân
A B C M E K H Hình minh họa nên không chính xác lắm
Chứng minh :
a) △ABC vuông tại A có AB = AC ⇒ △ABC vuông cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{180^o-90^o}{2}=\dfrac{90^o}{2}=45^o\)
b) Ta có: \(\widehat{ABH}+\widehat{BAH}+\widehat{AHB}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}+90^o=180^o\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}=90^o\)
\(\Rightarrow\widehat{ABH}=90^o-\widehat{BAH}\) ( 1)
Ta có:
\(\widehat{KAC}+\widehat{ACK}+\widehat{CKA}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{KAC}+\widehat{ACK}+90^o=180^o\)
\(\Rightarrow\widehat{KAC}+\widehat{ACK}=90^o\)
Có:
\(\widehat{BAH}+\widehat{KAC}=90^o\)
\(\Rightarrow\widehat{KAC}=90^o-\widehat{BAH}\) (2)
Từ (1) và (2) ⇒ \(\widehat{KAC}=\widehat{ABH}\)
Có: \(\widehat{ABH}+\widehat{BAH}=90^o\)
\(\Rightarrow\widehat{BAH}=90^o-\widehat{ABH}\)
\(\widehat{KAC}+\widehat{ACK}=90^o\)
\(\Rightarrow\widehat{ACK}=90^o-\widehat{KAC}\)
Mà \(\widehat{KAC}=\widehat{ABH}\) ( cmt)
\(\Rightarrow\widehat{BAH}=\widehat{ACK}\)
Xét △BHA và △AKC có:
\(\widehat{ABH}=\widehat{KAC}\text{ ( cmt )}\)
AB = AC ( gt)
\(\widehat{BAH}=\widehat{ACK}\text{ ( cmt )}\)
⇒ △BHA = △AKC ( g.c.g)
⇒ BH = AK ( tương ứng )
c ) Xét △AMB và △AMC có:
AB = AC ( gt)
AM - cạnh chung
BM = MC ( gt )
⇒ △AMB = △AMC ( c.c.c )
⇒ \(\widehat{ABM}=\widehat{ACM}\text{ ( tương ứng )}\)
Vì △ABC vuông cân tại A
⇒ \(\widehat{ABC}+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=45^o\)
Có : △AMB = △AMC ( cmt )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\text{ ( tương ứng )}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\text{ ( kề bù )}\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{BAM}+90^o+45^o=180^o\)
\(\Rightarrow\widehat{BAM}=180^o-90^o-45^o\)
\(\Rightarrow\widehat{BAM}=45^o\)
mà \(\widehat{MBA}=45^o;\widehat{BMA}=90^o\)
⇒ △MBA vuông cân tại M
⇒ MA = MB
d) Có \(\widehat{HBE}+\widehat{BEH}+\widehat{EHB}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{HBE}+\widehat{BEH}+90^o=180^o\)
⇒ \(\widehat{HBE}+\widehat{BEH}=180^o-90^o\)
\(\Rightarrow\widehat{HBE}+\widehat{BEH}=90^o\) (3 )
Có:
\(\widehat{MEA}+\widehat{EAM}+\widehat{AME}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{MEA}+\widehat{EAM}+90^o=180^o\)
\(\Rightarrow\widehat{MEA}+\widehat{EAM}=90^o\) ( 4)
Mà \(\widehat{BEH}=\widehat{MEA}\text{ (đối đỉnh )}\)
Từ (3) và (4) ⇒ \(\widehat{HBE}=\widehat{EAM}\text{ hay }\widehat{HBM}=\widehat{KAM}\)
Xét △BMH và △AMK có:
BH = AK ( cmt )
\(\widehat{HBM}=\widehat{KAM}\text{ ( cmt)}\)
BM = AM ( cmt )
⇒ △BMH = △AMK( c.g.c)
⇒ KM = HM ( tương ứng ) ( 5)
⇒ \(\widehat{BMH}=\widehat{AMK}\text{ ( tương ứng )}\)
Mà \(\widehat{AMK}+\widehat{KME}=90^o\)
\(\Rightarrow\widehat{BMH}+\widehat{KME}=90^o\)
\(\Rightarrow\widehat{HMK}=90^o\) (6)
Từ (5) và ( 6 ) ⇒ △MHK là tam giác vuông cân
A B C M H K E
a) Xét tam giác AME và tam giác CKE: ^BHA=^AKC=900; ^AEM=^KEC (Đối đỉnh)
=> ^MAE=^KCE. Ta có: ^BAM=^ACM=450 => ^BAM+^MAE=^ACM+^KCE
=> ^BAH=^ACK => Tam giác BHA= Tam giác AKC (Cạnh huyền góc nhọn)
=> BH=AK (2 cạnh tương ứng)
b) ^ABM=^MAC=450. Mà ^ABH=^CAK => ^ABM-^ABH=^MAC-^CAK => ^MBH=^MAK
=> Tam giác MBH=Tam giác MAK (c.g.c)
c) Tam giác MBH=Tam gics MAK (cmt) => ^BMH=^AMK (2 góc tương ứng)
=> ^AMB+^AMH=^KMH+^AMH => ^AMB=^KMH. Mà ^AMB=900.
=> ^KMH=900. Lại có MH=MK => Tam giác MHK vuông cân tại M.
a) Xét 2 tam giác vuông: tam giác ABH và tam giác ACK có:
AB = AC (gt)
góc A chung
suy ra: tam giác ABH = tam giác ACK (ch-gn)
b) áp dụng định lí tổng 3 góc của tam giác vào tam giác vuông ABH ta có:
góc BAH + góc ABH = 90^0
=> góc ABH = 90^0 - góc BAH
=> góc ABH = 90^0 - 50^0 = 40^0
Tam giác ABC cân tại A => \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}=65^0\)
=> góc HBC = 25^0
Tương tự: góc KCB = 25^0
suy ra: góc BOC = 130^0
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Hình tự vẽ nha
a) Vì tam giác ABC cân tại A
=> ABC = ACB (1)
Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)
Từ (1) và (2) => ABD = ACE
Xét tam giác ABD và tam giác ACE có :
AB = AC ( gt )
ABD = ACE ( cmt )
BD = CE ( gt )
=> tam giác ABD = tam giác ACE ( c-g-c )
=> D = E
Xét tam giác BHD và tam giác CKE có :
DHB = EKC ( = 900 )
BD = CE ( gt )
D = E ( cmt )
=> tam giác BHD = tam giác CKE ( ch - gn )
=> đpcm
b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )
=> HAB = KAC ( 2 góc tương ứng )
Xét tam giác AHB và tam giác AKC có :
HAB = KAC ( cmt )
AHB = AKC ( = 900 )
AB = AC ( gt )
=> tam giác AHB = tam giác AKC ( ch - gn )
=> đpcm
c) Nối H với K
Xét tam giác ADE cân tại A ( vì AD = AE )
=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Xét tam giác AHK cân tại A ( vì AH = AK )
\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) => D = AHK
mà 1 góc này ở vị trí đồng vị
=> HK // DE hay HK // BC ( đpcm )
Có j lên đây hỏi nha : Group Toán Học
vẽ hình đê bạn ơi mình éo có rảnh để ngồi vẽ hình hộ bạn đâu
cái bn đạo kia mất lịch sự quá