\(\Delta\) ABC vuông tại A ; AC > AB. Lấy H \(\varepsilon\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

A C D E

Xét \(\Delta ABC\) Và \(\Delta DEC\) có :

         \(\widehat{BAC}\)\(=\widehat{E\text{D}C}\) ( cùng = 900 )

            \(\widehat{C}\) là góc chung

  \(\Rightarrow\)\(\Delta ABC\) ~    \(\Delta DEC\) ( g-g )

Áp dụng định lí pi - ta - go vào \(\Delta ABC\)vuông tại A ta được :

  \(BC^2\)=  \(AB^2\)\(+\)\(AC^2\)

  \(BC^2\)=  32  +   52

  \(BC^2\)=  9  +  25

  \(BC^2\)=  34

  \(BC=\sqrt{34}\)

 Xét \(\Delta ABC\) có AD là đường phân giác \(\widehat{BAC}\)

\(\Rightarrow\frac{B\text{D}}{C\text{D}}=\frac{AB}{AC}\)\(\Rightarrow\frac{B\text{D}}{BC-B\text{D}}=\frac{3}{5}\)\(\Rightarrow\frac{B\text{D}}{\sqrt{34}-B\text{D}}=\frac{3}{5}\)

\(\Rightarrow5BD=3\sqrt{34}-3BD\)\(\Rightarrow3\sqrt{34}-3BD-5BD=0\)

\(\Rightarrow3\sqrt{34}-8BD=0\)\(\Rightarrow B\text{D}=\frac{3\sqrt{34}}{8}\)

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0

Bài 3: 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

DO đó: ΔHBA\(\sim\)ΔABC

SUy ra: BA/BC=BH/BA

hay \(BA^2=BH\cdot BC\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó: BD=60/7(cm); CD=80/7(cm)

12 tháng 7 2018

A B C D H K 40 BC=10

a) Ta có tam giác ABC cân tại A

⇒ AB = AC = 40 (cm)

Có: BD là phân giác của góc ABC

\(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{40}{10}=\dfrac{4}{1}\)

\(\Rightarrow\dfrac{AD}{4}=\dfrac{DC}{1}=\dfrac{AD+DC}{4+1}=\dfrac{AC}{5}=\dfrac{40}{5}=8\)

\(\Rightarrow\dfrac{AD}{4}=8\Rightarrow AD=8.4=32\left(cm\right)\)

\(CD=AC-AD=40-32=8\left(cm\right)\)

BC có rồi nhé bạn

b) Tam giác ABC cân tại A có AH là đường cao

⇒ AH cũng là đường trung tuyến

\(BH=CH=5\left(cm\right)\)

Lại có: AH ⊥ BC , DK ⊥ BC

⇒ AH // DK

Tam giác ACH có DK // AH

\(\dfrac{CK}{KH}=\dfrac{CD}{AD}=\dfrac{8}{32}=\dfrac{1}{4}\)

\(\dfrac{CK}{1}=\dfrac{CH}{4}=\dfrac{CK+KH}{1+4}=\dfrac{CH}{5}=\dfrac{5}{5}=1\)

\(CK=1\left(cm\right)\) , \(\dfrac{KH}{4}=1\Rightarrow KH=1.4=4\left(cm\right)\)

\(BK=BH+KH=5+4=9\left(cm\right)\)

11 tháng 7 2018

xin slot :)