\(\Delta ABC\) vuông tại A (AB<AC),đường cao AH,biết AB=6 cm.Đường trung trực của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

A B C F E D H 1 2 Ta thấy

\(\widehat{B}+\widehat{C}=90^0\)

\(\widehat{B}+\widehat{D}=90^o\)

=> \(\widehat{D}=\widehat{C}\)

Xét ΔFEC và ΔFBD có

\(\widehat{F}1=\widehat{F2}=90^o\)

\(\widehat{C}=\widehat{D}\) (cmt)

=> ΔFEC ∼ ΔFBD (đpcm)

b) Xét ΔAED và ΔHAC có

\(\widehat{DAE}=\widehat{AHC}=90^o\)

\(\widehat{D}=\widehat{C}\) (cmt)

=> ΔAED ∼ΔHAC (đpcm)

17 tháng 5 2020

AMAM là đường trung tuyến ứng với cạnh huyền nên AM=BC2=BMAM=BC2=BM

⇒△MAB⇒△MAB cân tại MM

⇒BAMˆ=MBAˆ⇒BAM^=MBA^

Ta có:

BADˆ=DAMˆ−BAMˆ=900−MBAˆ=900−HBAˆBAD^=DAM^−BAM^=900−MBA^=900−HBA^

HABˆ=900−HBAˆHAB^=900−HBA^

⇒BADˆ=HABˆ⇒BAD^=HAB^ nên ABAB là tia phân giác DAHˆDAH^ (đpcm)

b)

Xét tam giác CADCAD và ABDABD có:

DˆD^ chung

ACDˆ=900−ABHˆ=BADˆACD^=900−ABH^=BAD^

⇒△CAD∼△ABD⇒△CAD∼△ABD (g.g)

⇒CAAB=ADBD=CDAD⇒CAAB=ADBD=CDAD

⇒CA2AB2=CDBD(∗)⇒CA2AB2=CDBD(∗)

Dễ thấy △BAH∼△BCA△BAH∼△BCA (g.g) và △CAH∼△CBA△CAH∼△CBA (g.g)

⇒BABC=BHBA⇒BABC=BHBA và CACB=CHCACACB=CHCA

⇒AB2=BC.BH⇒AB2=BC.BH và AC2=CH.BCAC2=CH.BC

⇒AC2AB2=CHBH(∗∗)⇒AC2AB2=CHBH(∗∗)

Từ (∗);(∗∗)⇒CDBD=CHBH(∗);(∗∗)⇒CDBD=CHBH

⇒CD.BH=CH.BD⇒CD.BH=CH.BD (đpcm)

1 tháng 5 2017

A B C D E F H a) Xét \(\Delta FEC\) vuông tại F và \(\Delta FBD\) vuông tại F ,có

\(\widehat{FEC}=\widehat{FBD}\) (cùng phụ \(\widehat{FCE}\))

\(\Rightarrow\Delta FEC\) đồng dạng \(\Delta FBD\)(g.n)

b)Xét \(\Delta AED\) vuông tại A và \(\Delta HAC\) vuông tại H,có

\(\widehat{ADE}\) =\(\widehat{HCA}\)(cùng phụ \(\widehat{ABC}\))

\(\Rightarrow\Delta AED\) đồng dạng \(\Delta HAC\) (g.n)

c)Ta có: \(\dfrac{FE}{FB}=\dfrac{FC}{FD}\)( \(\Delta FEC\) đồng dạng \(\Delta FBD\))

\(\left\{{}\begin{matrix}FB=FC\\FD=FE+ED\end{matrix}\right.\)

\(\Rightarrow\dfrac{EF}{FB}=\dfrac{FB}{FE+ED}\)\(\Rightarrow FB^2=EF.\left(FE+ED\right)\)

\(\Rightarrow FB=\sqrt{4.\left(4+5\right)}=6=FC\)\(\Rightarrow BC=FB+FC=6+6=12\)(cm)

Xét \(\Delta ABC\) vuông tại A,có:

\(BC^2=AB^2+AC^2\) (định lí py ta go)

\(\Rightarrow12^2=6^2+AC^2\)\(\Rightarrow AC=\sqrt{12^2-6^2}=6\sqrt{3}\)(cm)

Xét \(\Delta CAH\) vuông tại H và \(\Delta CBA\) vuông tại A,có

\(\widehat{ECF}\) chung

\(\Rightarrow\Delta CAH\) vuông tại H đồng dạng \(\Delta CBA\)vuông tại A (g.n)

\(\Rightarrow\dfrac{CA}{CB}=\dfrac{AH}{BA}=k\) \(\Rightarrow\dfrac{6\sqrt{3}}{12}=\dfrac{AH}{6}\Rightarrow AH=\dfrac{6\sqrt{3}.6}{12}=3\sqrt{3}\)(cm)

11 tháng 4 2018

A B C H D E F

a) Xét \(\Delta FEC,\Delta ABC\) có :

\(\left\{{}\begin{matrix}\widehat{C}:Chung\\\widehat{EFC}=\widehat{BAC}=90^o\end{matrix}\right.\)

\(\Rightarrow\Delta FEC\sim\Delta ABC\left(g.g\right)\) (1)

Xét \(\Delta FBD,\Delta ABC\) có :

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFD}=\widehat{BAC}=90^o\end{matrix}\right.\)

\(\Rightarrow\Delta FBD\sim\Delta ABC\left(g.g\right)\) (2)

Từ (1) và (2) => \(\Delta FEC\sim\Delta FBD\left(\sim\Delta ABC\right)\)

b) Xét \(\Delta AED,\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{EAD}=\widehat{AHC}=90^o\\\widehat{ADE}=\widehat{HCA}\left(\Delta FEC\sim\Delta FBD\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AED\sim\Delta HAC\left(g.g\right)\)

22 tháng 4 2018

còn câu c nx bạn hihi

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số