Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)
Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)
\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)
a, Xét tam giác ABC vuông tại A, đường cao AH
cotC = 7/11 => \(\frac{AB}{AC}=\frac{7}{11}\Rightarrow AB=\frac{7}{11}.AC=\frac{7}{11}.28=\frac{196}{11}\)cm
Theo định lí Pytago cho tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\frac{196}{11}\right)^2+28^2}=33,188...\)cm
b, tanC = 5/7 => \(\frac{AC}{AB}=\frac{5}{7}\Rightarrow AB=\frac{7}{5}AC=\frac{7}{5}.28=\frac{196}{5}\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\frac{196}{5}\right)^2+28^2}=\frac{28\sqrt{74}}{5}\)cm
c, cosC = 4/5 => \(\frac{AC}{BC}=\frac{4}{5}\Rightarrow BC=\frac{5}{4}AC=\frac{5}{4}.28=35\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=21\)cm
d, sinC = 3/5 => \(\frac{AB}{BC}=\frac{3}{5}\Rightarrow\frac{AB}{3}=\frac{BC}{5}\Rightarrow\frac{BC^2}{25}=\frac{AB^2}{9}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{BC^2}{25}=\frac{AB^2}{9}=\frac{BC^2-AB^2}{25-9}=\frac{AC^2}{16}=49\)
\(\Rightarrow BC=35cm;AB=21cm\)
a: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
b: \(9\cdot sinB+6\cdot cosB-3\cdot tanC\)
\(=9\cdot\dfrac{AC}{BC}+6\cdot\dfrac{AB}{BC}-3\cdot\dfrac{AB}{AC}\)
\(=9\cdot\dfrac{3\sqrt{13}}{13}+6\cdot\dfrac{2\sqrt{13}}{13}-3\cdot\dfrac{2\sqrt{13}}{3\sqrt{13}}\)
\(=3\sqrt{13}-2\)
\(\Delta ABC\)vuông tại A
\(BH=\sqrt{AB^2-AH^2}=\sqrt{7,5^2-6^2}=4,5\)
có : \(AH^2=HB.HC\)
\(\Rightarrow HC=\dfrac{AH^2}{HB}=8\)
\(BC=HB+HC=12,5\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{\left(12,5\right)^2-\left(7,5\right)^2}=10\)
\(cosB=\dfrac{12,5}{10}=1,25\)
\(cotC=\dfrac{10}{7,5}=1,33\)
\(tanB=\dfrac{10}{7,5}=1,33\)
Bài 2:
Ta có : \(AC=tan\alpha.AB=\dfrac{5}{12}.6=2,5\)
\(BC=\sqrt{AB^2+AC^2}=6,5\)
( Có thể làm cách khác nữa nha, không nhất thiết dùng Pytago / \ )
\(AC=\sqrt{BC^2-AB^2}=8\\ \Rightarrow A=\dfrac{\dfrac{AC}{BC}+\dfrac{AB}{BC}}{\dfrac{AB}{AC}+\dfrac{AC}{AB}}=\dfrac{\dfrac{AB+AC}{BC}}{\dfrac{6}{8}+\dfrac{8}{6}}=\dfrac{\dfrac{14}{10}}{\dfrac{25}{12}}=\dfrac{7}{5}\cdot\dfrac{12}{25}=\dfrac{84}{125}\)