Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân
A B C M H K E
a) Xét tam giác AME và tam giác CKE: ^BHA=^AKC=900; ^AEM=^KEC (Đối đỉnh)
=> ^MAE=^KCE. Ta có: ^BAM=^ACM=450 => ^BAM+^MAE=^ACM+^KCE
=> ^BAH=^ACK => Tam giác BHA= Tam giác AKC (Cạnh huyền góc nhọn)
=> BH=AK (2 cạnh tương ứng)
b) ^ABM=^MAC=450. Mà ^ABH=^CAK => ^ABM-^ABH=^MAC-^CAK => ^MBH=^MAK
=> Tam giác MBH=Tam giác MAK (c.g.c)
c) Tam giác MBH=Tam gics MAK (cmt) => ^BMH=^AMK (2 góc tương ứng)
=> ^AMB+^AMH=^KMH+^AMH => ^AMB=^KMH. Mà ^AMB=900.
=> ^KMH=900. Lại có MH=MK => Tam giác MHK vuông cân tại M.
vẽ hình đê bạn ơi mình éo có rảnh để ngồi vẽ hình hộ bạn đâu
M E A B C H K 1 1 2
a, - Xét t/giác ABH và t/giác ACK ta có:
AB=AC (tam giác ABC vuông cân tại A)
\(\widehat{BAH}\) = \(\widehat{ACK}\) (cùng phụ với \(\widehat{A1}\))
\(\widehat{B1}\)= \(\widehat{A1}\) (cùng phụ với \(\widehat{BAH}\))
=>t/giác ABH = t/giác CAK (gcg)
=> BH = AK
b, \(\)AM là trung tuyến của t/giác ABC vuông cân tại A => AM = \(\frac{BC}{2}\) (1) và AM⊥BC
ta có: BM =\(\frac{BC}{2}\) (1)
Từ (1) và (2) => AM = BM
- Xét t/giác MBH và t/giác MAK ta có:
MB=AM (cmt)
BH=AK (phần a)
\(\widehat{B2}\) = \(\widehat{KAM}\) (cùng phụ với \(\widehat{AEM}\))
=> ΔHBM = ΔKAM (cgc)
c, Theo phần b: ΔHBM = ΔKAM
=> MH=MK (2 cạnh tg ứng) => t/giác MHK cân ở M (*)
ΔHBM = ΔKAM => \(\widehat{BHM}\) = \(\widehat{AKM}\) (2 góc tương ứng)
+ Ta có: \(\widehat{MHK}\) + \(\widehat{BHM}\) = 90o. hay: \(\widehat{MHK}\) + \(\widehat{AKM}\)= 90o
+ t/giác MHK có: \(\widehat{MHK}\) + \(\widehat{AKM}\) + \(\widehat{HMK}\) = 180o .hay:
90o + \(\widehat{HMK}\) = 180o ⇒ \(\widehat{HMK}\) = 90o (**)
từ (*) và (**) => đpcm
a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
Hay \(\widehat{ABD}=\widehat{ACE}\)
Theo định lý Cos ta có
\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)
\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)
Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE
Nên AD = AE hay tam giác ADE cân tại A
b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)
Nên góc KCE = góc DBH
Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)
Xét tam giác HBA và tam giác ACK vuông có :
+ góc HBA = góc KCA
+ AB = AC
\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)
c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)
\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)
\(\widehat{HBA}=\widehat{ACK}\)
\(\widehat{ABC}=\widehat{ACB}\)
Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O
d) Xét tam giác AMB và tam giác AMC
+ AM chung
+ BM = MC (gt)
+ AB = AC (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c
Và hai góc BAM = góc CAM
Hay AM là tia phân giác của góc BAC
Xét tam giác AOB và tam giác ACO
+ AB = AC (gt)
+ OB = OC (cmt )
+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)
Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c
Và góc BAO = góc CAO
Hay AO là phân giác của góc BAC
Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng
Ta có hình vẽ:
M A B C E H K
Ta có: góc ABH + góc BAH = 900 (cùng phụ vs góc H)
Ta có: góc CAK + góc BAH = 900 (GT)
=> góc ABH = góc CAK
Xét tam giác ABH và tam giác ACK có:
AB = AC (tam giác ABC cân)
góc H = góc K = 900 (GT)
góc ABH = góc CAK (chứng minh trên)
=> tam giác ABH = tam giác ACK
(cạnh huyền góc nhọn)
=> BH = AK (2 cạnh tương ứng)