Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MB=MC
góc HMB=góc KMC
=>ΔMHB=ΔMKC
=>HB=CK
b: Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó BHCK là hình bình hành
=>BK//CH
a) xét ΔΔvuông ABE vàΔΔvuông HBE có:
BE là cạnh chung
gcABE=gcHBE(BE là tia p.g của gc ABC)
=> tg ABE=tgHBE(cạnh huyền góc nhọn)
b) theo câu a: tg ABE= tg HBE (cmt)=>AB=BH (1)
trong tg vuông ABC có: gc B =60o=> gc C=30o
=> AB=1/2 BC(2)
=> BH = BC/2mà H thuộc BC => H là trung điểm BC
xét tg BCE có:H là TĐ của BC(cmt)
HK//BE(gt)=> K là trung điểm EC
xét tg vuông HEC có: HK là đường trung tuyến ứng vs cạnh huyền
=> HK=EK= EC/2=> tg HEK cân ở K
lại có:gc EKH = gc ACB+gc KHC( góc ngoài cuả tgHKC)
gc KHC=gc EBC=30o( đồng vị ,HK//BE)
do đó gc EHK=gc ACB+gc EBC=30+30=60o
tam giác cân có 1 góc = 60 o là tam giác đều
c)(nhiều cách lúm)
trong tg vuông HBM: gc HBM= 60o=>gc HMB= 30o
=>=1/2BMmà BH= 1/2BC(cmt )
=> BM=BC=> tg BMC cân ở B
BN là đường p.g của gcMBC
=> BN đồng thời là đường trung trực của tgMBC hay của cạnh MC
???, bạn ơi, hình như có 2 điểm M, : " AM cắt BC,BK lần lượt tại M và N " ?
Lời giải:
a. Tứ giác $ADHE$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên $ADHE$ là hình chữ nhật
$\Rightarrow AH=DE$
b.
Gọi $T$ là giao $AM, DE$
Do $AM$ là đường trung tuyến ứng với cạnh huyền nên $AM=\frac{BC}{2}=MC$
$\Rightarrow AMC$ cân tại $M$
$\Rightarrow \widehat{TAE}=\widehat{MAC}=\widehat{C}$
$ADHE$ là hcn nên $\widehat{TEA}=\widehat{DEA}=\widehat{DHA}=90^0-\widehat{BHD}=90^0-\widehat{C}$
Vậy: $\widehat{TAE}+\widehat{TEA}=90^0$
$\Rightarrow \widehat{ATE}=90^0$
$\Rightarrow AM\perp DE$
ta có BH//Ck(cùng vg vs AM)
xét tg BMH và tg CMK có: ^BHM=^CKM=() ; BM=CM (vì AM là đg trung tuyến) ; ^HBM=^KCM( vì BH//CK)
=> tg BMH=tg CMK (ch-gn)=> HM=KM(2 cạnh t/ứ)
xét tg BHCK có: M là t/đ của BC và M la t/đ của HK(vì HM=HK) => tg BHCK là hbh
=> CH=BK và CH//BK (đpcm)
k mk nha!