K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

A B C H K M

ta có BH//Ck(cùng vg vs AM)

xét tg BMH và tg CMK có:  ^BHM=^CKM=() ; BM=CM (vì AM là đg trung tuyến) ; ^HBM=^KCM( vì BH//CK)

=> tg BMH=tg CMK (ch-gn)=> HM=KM(2 cạnh t/ứ)

xét tg BHCK có: M là t/đ của BC và M la t/đ của HK(vì HM=HK) => tg BHCK là hbh

=> CH=BK và CH//BK (đpcm)

k mk nha!

a: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có

MB=MC

góc HMB=góc KMC

=>ΔMHB=ΔMKC

=>HB=CK

b: Xét tứ giác BHCK có

BH//CK

BH=CK

Do đó BHCK là hình bình hành

=>BK//CH

16 tháng 8 2021

a) xét ΔΔvuông ABE vàΔΔvuông HBE có:

BE là cạnh chung

gcABE=gcHBE(BE là tia p.g của gc ABC)

=> tg ABE=tgHBE(cạnh huyền góc nhọn)

b) theo câu a: tg ABE= tg HBE (cmt)=>AB=BH (1)

trong tg vuông ABC có: gc B =60o=> gc C=30o

=> AB=1/2 BC(2)

=> BH = BC/2mà H thuộc BC => H là trung điểm BC

xét tg BCE có:H là TĐ của BC(cmt)

HK//BE(gt)=> K là trung điểm EC

xét tg vuông HEC có: HK là đường trung tuyến ứng vs cạnh huyền

=> HK=EK= EC/2=> tg HEK cân ở K

lại có:gc EKH = gc ACB+gc KHC( góc ngoài cuả tgHKC)

gc KHC=gc EBC=30o( đồng vị ,HK//BE)

do đó gc EHK=gc ACB+gc EBC=30+30=60o

tam giác cân có 1 góc = 60 o là tam giác đều

c)(nhiều cách lúm)

trong tg vuông HBM: gc HBM= 60o=>gc HMB= 30o

=>=1/2BMmà BH= 1/2BC(cmt )

=> BM=BC=> tg BMC cân ở B

BN là đường p.g của gcMBC

=> BN đồng thời là đường trung trực của tgMBC hay của cạnh MC

16 tháng 8 2021

nếu đúng thì k cho mik nhé

31 tháng 12 2017

???, bạn ơi, hình như có 2 điểm M, : " AM cắt BC,BK lần  lượt tại M và N " ?

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:

a. Tứ giác $ADHE$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên $ADHE$ là hình chữ nhật 

$\Rightarrow AH=DE$

b.

Gọi $T$ là giao $AM, DE$

Do $AM$ là đường trung tuyến ứng với cạnh huyền nên $AM=\frac{BC}{2}=MC$

$\Rightarrow AMC$ cân tại $M$

$\Rightarrow \widehat{TAE}=\widehat{MAC}=\widehat{C}$

$ADHE$ là hcn nên $\widehat{TEA}=\widehat{DEA}=\widehat{DHA}=90^0-\widehat{BHD}=90^0-\widehat{C}$

Vậy: $\widehat{TAE}+\widehat{TEA}=90^0$

$\Rightarrow \widehat{ATE}=90^0$

$\Rightarrow AM\perp DE$

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Hình vẽ: