\(\Delta ABC\), trên cạnh BC lấy điểm K sao cho BK = 2KC. Gọi M là trung điểm của AB,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

A B C N D O X X K I X X X X

Đề bài bạn phải ghi là trên tia đối của tia AK lấy điểm I sao cho AI = AK.

12 tháng 3 2021

a) Xét \(\Delta ABC\)có:

NA = NC (giả thiết)

DB = DC (giả thiết)

\(\Rightarrow\)ND là đường trung bình của \(\Delta ABC\)

\(\Rightarrow ND//AB\)(tính chất) (1)

Mà \(AB\perp AC\)(vì \(\Delta ABC\)vuông tại A)

\(\Rightarrow AB\perp AN\) (2)

Do đó \(ND\perp AN\)(3)

Xét tứ giác ANDB có  (1), (2), (3).

\(\Rightarrow\)ANDB là hình thang vuông (điều phải chứng minh)

AH
Akai Haruma
Giáo viên
26 tháng 9 2017

Lời giải:

Từ $B$ kẻ \(BT\parallel AC\)

Xét tam giác $DAK$ có \(BT\parallel AK\Rightarrow \) áp dụng định lý Thales:

\(\frac{BT}{AK}=\frac{BD}{DA}=\frac{1}{2}\Rightarrow AK=2BT(1)\) (do \(B\) là trung điểm của $AD$ )

Xét tam giác $BTM$ và $CKM$ có:

\(\left\{\begin{matrix} \angle TBM=\angle KCM(\text{so le trong})\\ \angle BMT=\angle CMK(\text{góc đối})\\ BM=MC\end{matrix}\right.\)

\(\Rightarrow \triangle BTM=\triangle CKM(g.c.g)\Rightarrow BT=CK(2)\)

Từ \((1),(2)\Rightarrow AK=2KC\) (đpcm).

21 tháng 8 2017

Qua B kẻ BH // AC , cắt DM tại H

Ta có {BH // AK ; AB = BD => BH là đường trung bình của tam giác ADK

=> AK=2BH (1)

Dễ dàng chứng minh được tam giác MKC = tam giác MBH (g.c.g)

=> BH = CK (2)

Từ (1) và (2) suy ra AK = 2CK 

21 tháng 8 2017

Qua B Kẻ BH // AC , cắt DM tại H

Ta có : BH // AK

             AB // BD

=> BH là đường trung bình của tam giác ADK

=> AK = 2 BH (1)

·    *   Xét tam giác MKC và tam giác MBH .

CÓ : BM = CM ( M là trung điểm của BC)

         Góc M1= Góc M2 ( 2 góc đối đỉnh)

        Góc MKC = MBH ( = 90 *)* là độ

=> Tam giác MKC = Tam giác MBH ( g. c . g)

=> BH = KC ( 2 cạnh tương ứng )(2)

Từ (1), (2) suy ra được AK = 2 KC

21 tháng 2 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi H là trung điểm của AK

Trong  ∆ ADK ta có BH là đường trung bình của ∆ ADK.

⇒ BH // DK (tính chất đường trung bình của tam giác)

Hay BH // MK

Trong  ∆ BCH ta có M là trung điểm của BC

MK // BH

⇒ CK = HK

AK = AH + HK = 2HK

Suy ra: AK = 2 KC ( vì HK =KC)