\(\Delta ABC\) nhọn, vẽ BD \(\perp\)Ac tại D và CE
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

mk cần phần c)

7 tháng 1 2019

a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

Hay \(\widehat{ABD}=\widehat{ACE}\)

Theo định lý Cos ta có

\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)

\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)

Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE

Nên AD = AE hay tam giác ADE cân tại A

b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)

Nên góc KCE = góc DBH

Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)

Xét tam giác HBA và tam giác ACK vuông có :

+ góc HBA = góc KCA

+ AB = AC

\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)

7 tháng 1 2019

c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)

\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)

\(\widehat{HBA}=\widehat{ACK}\)

\(\widehat{ABC}=\widehat{ACB}\)

Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O 

d) Xét tam giác AMB và tam giác AMC 

+ AM chung 

+ BM = MC (gt)

+ AB = AC (gt)

Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c

Và hai góc BAM = góc CAM 

Hay AM là tia phân giác của góc BAC

Xét tam giác AOB và tam giác ACO

+ AB = AC (gt)

+ OB = OC (cmt )

+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)

Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c

Và góc BAO = góc CAO

Hay AO là phân giác của góc BAC

Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng

 

a: HB=HC=6cm

\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đo: ΔABM=ΔACN

Xét ΔBDM vuông tại D và ΔCEN vuông tại E có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔBDM=ΔCEN

c: Xét ΔKBC có

KH là đường cao

KH là đường trung tuyến

Do đó:ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

=>\(\widehat{KCB}=\widehat{DBM}\)

=>\(\widehat{KCB}=\widehat{ECN}\)

=>\(\widehat{KCB}+\widehat{BCE}=180^0\)

=>K,E,C thẳng hàng

22 tháng 12 2016

a,Xét tam giác BMH và CMK có

+ BM = CM ( GT)

+ BMH=CMK (Hai góc đối đỉnh)

+ MH = MK (GT)

,Do đó tam giác BMH= tam giác CMK (Đpcm)

b,Vì tam giác BMH=tam giác CMK ( chứng minh trên)

nên MBH=MCK (Hai góc tương ứng)

mà 2 góc MBH và MCK ở vị trí so le trong nên BH //CK

lại có BH vuông góc AC (GT)

nên CA vuông góc CK (đpcm)

* Chứng minh được CH = CG

* Chứng minh được CH = BK

Suy ra đpcm

22 tháng 12 2016

2 bước cuối là sao mk ko hỉu ???

5 tháng 5 2018

Hình ảnh bạn tự vẽ nhé!

a/ Tam giác ADI vuông tại I và tam giác ADI vuông tại I có:

ID = IH ( vì I là trung điểm của HD)

IA là cạnh chung

=> \(\Delta ADI=\Delta AHI\)( hai cạnh góc vuông)

b/ Tam giác ADB và tam giác AHB có:
AD = AH ( tam giác ADI = tam giác AHI)

\(\widehat{DAI}\) = \(\widehat{HAI}\)( vì tam giác ADI = tam giác AHI)

BA là cạnh chung.

=> Tam giác ADB = tam giác AHB ( c.g.c)

=> D = H = 90 độ

=> AD\(\perp\)BD tại D

5 tháng 1 2021

Hình bạn tự vẽ nhé!

Giải:

Vì D là trung điểm của AC (gt)

nên AD = CD

Xét \(\Delta ABD\) và \(\Delta CED\) có:

AD = CD (chứng minh trên)

\(\widehat{ADB}=\widehat{CDE}\)(2 góc đối đỉnh)

ED = BD (gt)

\(\Rightarrow\Delta ABD=\Delta CED\) (c.g.c)   (1)

\(\Rightarrow\widehat{ABD}=\widehat{CED}\) (2 góc tương ứng)  

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)AB // CD  (dấu hiệu nhận biết)  (2)

Từ (1), (2) \(\Rightarrowđpcm\)

b) Ta có: AF _|_ BD tại F

              CG _|_ DE tại G

\(\Rightarrow\hept{\begin{cases}\widehat{AFD}=90^o\\\widehat{CGD}=90^o\end{cases}}\Rightarrow\widehat{AFD}=\widehat{CGD}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) AF // CG (dấu hiệu nhận biết) (3)

\(\Rightarrow\widehat{FAH}=\widehat{DCG}\) (2 góc so le trong)

Xét \(\Delta ADF\) và \(\Delta CDG\) có:

AD = CD (chứng minh trên)

\(\widehat{ADF}=\widehat{CDG}\) (2 góc đối đỉnh)

\(\widehat{FAH}=\widehat{DCG}\) (chứng minh trên)

\(\Rightarrow\Delta ADF=\Delta CDG\) (g.c.g)

\(\Rightarrow\) DF = DG (2 cạnh tương ứng)  (4)

Từ (3), (4) \(\Rightarrowđpcm\)

c) Xét \(\Delta CDE\) có:

Giao điểm 2 đường thẳng CG và EI là M

CG, EI đều là đường cao của \(\Delta CDE\)

\(\Rightarrow\)DM cũng là đường cao của \(\Delta CDE\)

\(\Rightarrow DM\perp AB\)(5)

Xét \(\Delta ABD\) có:

Giao điểm 2 đường thẳng CG, EI là M

AF, BH đều là đường cao của \(\Delta ABD\)

\(\Rightarrow DK\) cũng là đường cao của \(\Delta ABD\)

\(\Rightarrow DK\perp AB\) (6)

Từ (5), (6) suy ra đpcm

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.