K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 5 2022
Gọi H là giao điểm của AD và BC
=>H là trung điểm của AD
Xét ΔADE có
H là trung điểm của AD
O là trung điểm của AE
Do đó: HO là đường trung bình
=>HO//DE
hay DE//BC
Xét tứ giác ABEC có
O là trung điểm của AE
O là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: BE=AC(1)
Xét ΔACD có
CH là đường cao
CH là đường trung tuyến
Do đó ΔACD cân tại C
=>CA=CD(2)
Từ (1) và (2) suy ra BE=CD
Xét tứ giác BCED có BC//ED
nên BCED là hình thang
mà BE=CD
nên BCED là hình thang cân
A B C O D E K
Gọi K là giao điểm của AD và BC => K là trung điểm AD (vì D đối xứng với A qua BC)
lại có O là trung điểm AE (vì E đối xứng với A qua O)
=> KO là đường trung bình của tam giác ADE => KO // DE hay BC // DE => BCED là hình thang (1)
ta có O là trung điểm AE (cmt) và O cũng là trung điểm BC (giả thiết)
=> ABEC là hình bình hành => AB // CE => \(\widehat{ABC}=\widehat{BCE}\)(so le trong)
lại có \(\widehat{ABC}=\widehat{DBC}\)(do D đói xứng với A qua BC)
=> \(\widehat{DBC}=\widehat{BCE}\)(2)
từ (1) và (2) => BCED là hình thang cân.