Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sory mình chưa đọc hết
A) Xét ACE và ABD có:
Góc BAC chung
góc AEC=gocsADB = 90
=> ACE đồng dạng với ABD
B) Xét tam giác EHB và tam giác DHC
EHB=DHC(2 góc đối đỉnh)
BEH=CDH=90
=> EHB đồng dạng với DHC
=> EH/HB = HD/HC (tính chất)
=> EH.CH=HD.HB
C) Vì BD,EC là 2 đường cao của tam giác ABC cắt nhau tại H
=> AH cũng là đường cao
=>AH vuông góc với BC
Xét AFC và FIC
ACB chung
AFC=FIC=90
=>Tam giác AFC đồng dạng với tam giác FIC
=> IF/IC=FA/FC(tính chất)
D) gọi NI cắt MF tại K
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
Do đó: ΔABD\(\sim\)ΔACE
b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)
Do đó: ΔHEB\(\sim\)ΔHDC
Suy ra: HE/HD=HB/HC
hay \(HE\cdot HC=HB\cdot HD\)
Lời giải:
a)
Xét tam giác $ABD$ và $ACE$ có:
\(\left\{\begin{matrix} \widehat{A}-\text{chung}\\ \widehat{ADB}=\widehat{AEC}=90^0\end{matrix}\right.\Rightarrow \triangle ABD\sim \triangle ACE(g.g)\)
b)
Xét tam giác $HBE$ và $HCD$ có:
\(\widehat{BHE}=\widehat{CHD}\) (2 góc đối đỉnh)
\(\widehat{HEB}=\widehat{HDC}=90^0\)
\(\Rightarrow \triangle HBE\sim \triangle HCD(g.g)\)
\(\Rightarrow \frac{HB}{HE}=\frac{HC}{HD}\Rightarrow HB.HD=HC.HE\)
c)
Vì $H$ là giao điểm của 2 đường cao $CE,BD$ nên $H$ là trực tâm của tam giác $ABC$
\(\Rightarrow AH\perp BC\)\(\Rightarrow AF\perp BC\Rightarrow \widehat{AFC}=90^0\)
Xét tam giác $AFC$ và $FIC$ có:
\(\left\{\begin{matrix} \widehat{C}-\text{chung}\\ \widehat{AFC}=\widehat{FIC}=90^0\end{matrix}\right.\Rightarrow \triangle AFC\sim \triangle FIC(g.g)\)
\(\Rightarrow \frac{AF}{FC}=\frac{FI}{IC}\) (đpcm)
d) Gọi giao điểm của $NI$ và $FM$ là $K$.
Từ kết quả phần c \(\frac{AF}{FC}=\frac{FI}{IC}\Leftrightarrow \frac{\frac{FN}{2}}{FC}=\frac{FI}{2CM}\Leftrightarrow \frac{FN}{FC}=\frac{FI}{CM}\)
\(\Leftrightarrow \frac{FI}{FN}=\frac{CM}{FC}\)
Xét tam giác $FIN$ và $CMF$ có:
\(\widehat{IFN}=\widehat{MCF}(=90^0-\widehat{IFC})\)
\(\frac{FN}{CF}=\frac{FI}{CM}\) (cmt)
\(\Rightarrow \triangle FIN\sim \triangle CMF(c.g.c)\Rightarrow \widehat{FNK}=\widehat{FNI}=\widehat{CFM}\)
Mà \(\widehat{CFM}=90^0-\widehat{NFK}\)
\(\Rightarrow \widehat{FNK}=90^0-\widehat{NFK}\)
\(\Rightarrow \widehat{FNK}+\widehat{NFK}=90^0\)
\(\Rightarrow \widehat{FKN}=90^0\Rightarrow NI\perp MF\) (đpcm)