K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

A B C L N M

1, 2  tam giac vuong ANB  va tam giac  ALC co goc A chung   nen  2 tam giac nay dong dang 

\(\Rightarrow\frac{AN}{AB}=\frac{AL}{AC}\)

 vi vay \(\Delta ANL~\Delta ABC\)

2, ta co \(AN=\cos A\cdot AB\) \(BL=\cos\cdot BC\) \(CM=\cos C\cdot AC\)

\(\Rightarrow AN\cdot BL\cdot CM=\cos A\cdot\cos B\cdot\cos C\cdot AB\cdot AC\cdot BC\)

hay\(\frac{AN\cdot BL\cdot CM}{AB\cdot BC\cdot CA}=\cos A\cdot\cos B\cdot\cos C\)

15 tháng 10 2019

H F D E A B C

a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)

SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A   (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))

b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC

=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC

20 tháng 9 2020

2.

a, Kẻ \(AH\perp BC\Rightarrow\left\{{}\begin{matrix}cosB=\frac{BH}{AB}\\cosC=\frac{CH}{AC}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}BH=AB.cosB\\CH=AC.cosC\end{matrix}\right.\)

\(\Rightarrow BC=BH+CH=AB.cosB+AC.cosC\)

b, câu b trưa học tối làm tiếp nha, giờ có việc gấp

20 tháng 9 2020

1. Đề đúng phải là \(sin\widehat{BAC}=2sin\widehat{HAC}.cos\widehat{HAC}\) \(\left(cos\text{ không phải }cot\right)\)

Kẻ \(BD\perp AC\)

\(sin\widehat{BAC}=2sin\widehat{HAC}.cos\widehat{HAC}\)

\(\Leftrightarrow\frac{BD}{AB}=2.\frac{CH}{AC}.\frac{AH}{AC}=\frac{BC.AH}{AB^2}\)

\(\Leftrightarrow\frac{BD}{BC}=\frac{AH}{AB}\)

Ta cần chứng minh \(\frac{BD}{BC}=\frac{AH}{AB}\)

Xét \(\Delta BDC\)\(\Delta AHB\) có:

\(\left\{{}\begin{matrix}\widehat{C}=\widehat{ABH}\\\widehat{BDC}=\widehat{AHB}=90^o\end{matrix}\right.\Rightarrow\Delta BDC\sim\Delta AHB\left(g-g\right)\)

\(\Rightarrow\frac{BD}{BC}=\frac{AH}{AB}\left(đpcm\right)\)