Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nha
a) \(\Delta ABC\) có \(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)
vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)
vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)
từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)
xét tam giác BCD và tam giác CBE có:
\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)
\(\stackrel\frown{B}=\stackrel\frown{C}\)
BC chung
\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)
b) \(\Delta BOC\)có \(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)
c) xét \(\Delta AOB\)và \(\Delta AOC\)có
AO chung
AB=AC
\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)
\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)
\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)
vì \(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)
\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)
Xét \(\Delta OAK\)và \(\Delta OAH\)có:
\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)
\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)
OA chung
\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)
\(\Rightarrow OH=OK\)
nếu sai ở đâu mong bạn bỏ qua cho nha
x A B C H 1 2 D 1 2
Xét \(\Delta DBC\) có:
\(\widehat{ADB}\) là góc ngoài của \(\Delta BCD\)
\(\Rightarrow\widehat{ADB}=\widehat{B_2}+\widehat{C}\)
\(\Rightarrow\widehat{C}=\widehat{ADB}-\widehat{B_2}=45^o-\frac{\widehat{B}}{2}\)
Xét \(\Delta ABC\) có
\(\widehat{A_1}\) là góc ngoài tại đỉnh A
\(\Rightarrow\widehat{A_1}=\widehat{B}+\widehat{C}=\widehat{B}+45^o-\frac{\widehat{B}}{2}\)
\(\Rightarrow\widehat{A_1}=45^o+\frac{\widehat{B}}{2}\) (1)
Xét \(\Delta HAC\) vuông tại H có
\(\widehat{A_2}=90^o-\widehat{C}=90^o-\left(45^o-\frac{\widehat{B}}{2}\right)=45^o+\frac{\widehat{B}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta ABH\) có D là giao điểm của một tia phân giác ngoài với một tia phân giác trong không kề
=> tia HD phải là tia phân giác ngoài tại đỉnh H
=> \(\widehat{DHC}=45^o\)
=> HD // AB (vì có cặp góc đồng vị bằng nhau)
Hình bạn tự vẽ nha!
Ta có:
AH_|_BC(AH là đường cao tam giác ABC)
DK_|_BC(DK là đường trung trực của BC)
=>AH//DK(t/c đường thẳng song song)
=>góc AED=góc EDK(so le trong) (1)
=>góc BEH=góc EDK( 2 góc đồng vị) (2)
Từ (1),(2) suy ra:
góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)
Mặt khác:
Xét tam giác BKD và tam giác DKC,có:
DK cạnh chung
BK=KC( K là trung điểm của BC)
góc BKD=góc DKC=1 vuông
=> tam giác BKD=tam giác DKC(c.g.c)
=>BD=DC
=>tam giác BDC cân tại D
Nên góc BDK=góc CDK(t/c tam giác cân) (3)
Lại do: AH//DK
=>góc CDK=góc DAH( 2 góc đồng vị) (4)
Từ (3),(4)=>góc BDK=góc DAH
Mà góc AED=góc BDK( so le trong)
E là giao điểm của BD và AH(gt)
Nên E nằm giữa BD và AH
=>góc DAE=góc DAH=góc AED
=>tam giác ADE cân tại D ( đpcm)
Cách 1:
Kẻ \(IH\perp AB,IK\perp AC\).Ta có \(\Delta IHE=\Delta IKD\)(cạnh huyền-cạnh góc vuông)
\(\Rightarrow\widehat{IEH}=\widehat{IDK}\) (1)
Xét 4 trường hợp :
a) H thuộc đoạn BE ,K thuộc đoạn CD ( hình a)
Từ (1) \(\Rightarrow\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\) ,do đó \(\widehat{C}=\widehat{B}\)
A E H I D K B C Hình a
A K D E H B C I Hình b
b) H thuộc đoạn BE,K thuộc đoạn AD.Chứng min tương tự như phần a ta được \(\widehat{C}=\widehat{B}\)
c) H thuộc đoạn AE ,K thuộc đoạn AD (hình b )
Từ (1) ta có :
\(\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\)
\(\Rightarrow\widehat{A}=\widehat{\frac{B}{2}}+\widehat{\frac{C}{2}}\)
\(\Rightarrow2\widehat{A}=\widehat{B}+\widehat{C}\)
\(\Rightarrow3\widehat{A}=\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}=60^o,\widehat{B}+\widehat{C}=120^o.\)
d) H thuộc đoạn AE,K thuộc đoạn CD.Chứng min tương tự như phần c ta được : \(\widehat{B}+\widehat{C}=120^o\).
Cách 2
Không mất tín tổng quát,giả sử \(AD\ge AE\).Xét 2 trường hợp :
a) Trường hợp AD= AE ( hình c)
\(\Delta ADI=\Delta AEI\left(c.c.c\right)\Rightarrow\widehat{ADI}=\widehat{AEI}\)
\(\Delta ADB\)và \(\Delta AEC\) có \(\widehat{A}\) chung,\(\widehat{ADI}=\widehat{AEI}\)nên \(\widehat{B}_1=\widehat{C}_1.\)
Do đó \(\widehat{B}=\widehat{C}\)
A E D B C I 1 2 1 2 Hình c
A F E B C D I 1 1 1 Hình d
b) Trường hợp AD>AE.Lấy F trên AD sao cho À=AE (hình d)
\(\Delta AFI=\Delta AEI\left(c.g.c\right)\Rightarrow IF=IE,\widehat{F_1}=\widehat{E}_1\)
Do IE=ID nên IF =ID,do đó \(\widehat{F_1}=\widehat{D_1}\).
\(\Rightarrow\widehat{D_1}=\widehat{E_1}\),tức là \(\widehat{A}+\widehat{\frac{B}{2}}=\widehat{B}+\frac{\widehat{C}}{2}.\)
Biến đổi như cách 1,ta được \(\widehat{B}+\widehat{C}=120^o\).
P/s:Hình xấu :)
Bài làm
a) Xét tam giác ABM có:
MK là đường trung trực
=> MB = MA ( tính chất đường trung trực )
=> Tam giác ABM cân tại M
b) Vì MK vuông góc AB
CB vuông góc AB
=> MK // CB
=> ^AMK = ^MCB ( đồng vị ). (1)
Vì tam giác ABM cân tại M
Mà MK là trung trực
=> MK là phân giác
=> ^AMK = ^BMK. (2)
Từ (1) và (2) => ^BMK = ^MCB. (3)
Vì tam giác BMK vuông tại K
=> ^BMK + ^MBK = 90°
Vì tam giác ABC vuông tại A
=> ^MBK + ^MBC = 90°
=> ^BMK = ^MBC. (4)
Từ (3) và (4) => ^MBC = ^MCB
bài làm
c) Xét tam giác BIA có:
AH vuông góc với BI
IK vuông góc với AB
Mà AH và IK cắt nhau ở M
=> M là trực tâm
=> BM vuông góc với IA ( đpcm )
d) Xét tam giác HMB và tam giác EMA có:
^MHB = ^MEA = 90°
Cạnh huyền: BM = AM ( cmt )
Góc nhọn: ^HMB = ^EMA ( đối )
=> Tam giác HMB = tam giác EMA ( ch-gn )
=> HM = ME
=> Tam giác MHE cân tại M
=> ^MHE = ^MEH
Xét tam giác MHE có:
^HME + ^MHE + ^MEH = 180°
=> ^HME + 2^MHE = 180°
=> 2^MHE = 180° - ^HME. (5)
Xét tam giác ABM cân tại M có:
^BMA + ^MBA + ^MAB = 180°
=> ^BMA + 2^MAB = 180°
=> 2^MAB = 180° - ^BMA. (6)
Mà ^HME = ^BMA ( đối ). (7)
Từ (5) và (6) và (7) => 2^MHE = 2^MAB
=> ^MHE = ^MAB
Mà hai góc này ở vị trí so le le trong
=> HE // AB