Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
a/ xét tứ giác AMCH , ta có
N là trung điểm AC [ gt]
N là trung điểm HM [ vì H đối xứng N qua M]
mà AC thuộc HM tại N
suy ra ; AMCH là hình bình hành [ dấu hiệu nhận biết ]
có AMCH là hình bình hành [ cma]
suy ra MC//AH [t/chat hình bình hành] M thuộc BC
suy ra AH//BM [1]
lại có M là trung điểm của BC [ gt ]
suy ra BM=MC
mà AH=BM [ tứ giác AMCH là hình bình hành] [2]
xét tứ giác ABMN , có ;
AH //BM [cmt]
AH= BM [cmt]
suy ra ABMH là hình bình hành [ dấu hiệu nhận biết ]
a: Xét tứ giác BNCH có
M là trung điểm của BC
M là trung điểm của HN
Do đó: BNCH là hình bình hành
Bài 1:
a: Xét tứ giác ECDF có
EC//FD
EC=FD
Do đó: ECDF là hình bình hành
mà FD=DC
nên ECDF là hình thoi
b: Xét tứ giác ABED có EB//AD
nên ABED là hình thang
c: Xét ΔAED có
EF là đường trung tuyến
EF=AD/2
Do đó: ΔAED vuông tại E
a) Xét tứ giác MBPA có
N là trung điểm của đường chéo BA
N là trung điểm của đường chéo MP
Do đó: MBPA là hình bình hành
b) Xét ΔBCA có
M là trung điểm của BC
N là trung điểm của BA
Do đó: MN là đường trung bình của ΔBCA
Suy ra: MN//CA và \(MN=\dfrac{CA}{2}\)
mà P\(\in\)MN và \(MN=\dfrac{MP}{2}\)
nên MP//CA và MP=CA
Xét tứ giác PACM có
MP//CA(cmt)
MP=CA(cmt)
Do đó: PACM là hình bình hành
mà \(\widehat{MCA}=90^0\)
nên PACM là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật
a) tứ giác AMHN có \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\) => tứ giác AMHN là hình chữ nhật
b) vì O đối dứng H qua M => OM=MH
E đối xứng H qua N => HN=NE
xét tam giác HDE có \(\hept{\begin{cases}OH=MH\\HN=NE\end{cases}\Rightarrow}\)MN là đường trung bình tam giác HDE
=> MN//DE lại có MA // NE => MAEN là hình bình hành
c) có MAEN là hình bình hành => MN=AE
MN là đường trung bình tam giác HDE => \(MN=\frac{1}{2}DE\)
=> \(AE=\frac{1}{2}DE\)=> A là trung điểm DE
ở đề câu a bạn ghi ko rõ lắm nên mình chọn điểm H thay điểm D nhé
a)gọi giao điểm của BC và NH là K
xét \(\Delta BMH\) và \(\Delta CMN\) có:
MB=MB(gt)
MH=MN(gt)
\(\widehat{BMH}=\widehat{NMH}\)(2 góc đối đỉnh)
=>\(\Delta BMH=\Delta NMC\left(c.g.c\right)\)
=> BH=NC
\(\widehat{HBM}=\widehat{NCM}\) =>BH//NC
=> tứ giác BNHD là hình bình hành( theo định lý 2)
ta có:
BH=NC
NC=AN
=> BH=AN
AN//BH
=> tứ giác ABHN là hình bình hành
b)
nếu BHCN là hình chữ nhật thì KB=KH=KC=KN
=> góc KCN= góc KNC(1)
ta có tứ giác ABHN là hình bình hành nên AB//NH
=> góc BCA= góc KNC(2)
từ (1)(2) => góc KCN= góc BCA
=> tam giác ABC cân tại A
vậy để tứ giác BHCN là hình chữ nhật thì tam giác ABC phải cân tại B