Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phạm Hoàng GiangTRẦN MINH HOÀNGNgô Thu TrangThien Tu BorumShizadonAce LegonaRain Tờ Rym TeTrịnh Ánh NgọcngonhuminhNguyễn Thanh Hằng
Ta có hình vẽ:
A B C H B D
Xét Δ CDA và Δ ABC có:
CD = AB (gt)
AC là cạnh chung
DA = BC (gt)
Do đó, Δ CDA = Δ ABC (c.c.c)
=> góc DAC = góc BCA (2 góc tương ứng)
Mà DAC và BCA là 2 góc ở vị trí so le trong nên AD // BC (đpcm)
Lại có: \(AH\perp BC\) nên \(AH\perp AD\) (đpcm)
Ta có hình vẽ:
D A B C H
Xét Δ CDA và Δ ABC có:
AD = BC (gt)
CD = AB (gt)
AC là cạnh chung
Do đó, Δ CDA = Δ ABC (c.c.c)
=> DAC = ACB (2 góc tương ứng)
Mà DAC và ACB là 2 góc ở vị trí so le trong
=> AD // BC (1)
Lại có: AH \(\perp\)BC => AH \(\perp\) AD (2)
Từ (1) và (2) => đpcm
Xét \(\Delta\)ABC và \(\Delta\)CDA, có:
AB=CD (gt)
CB=AD (gt)
AC: cạnh chung
Do đó: \(\Delta\)ABC=\(\Delta\)CDA (c.c.c)
=> gócBAC=gócDCA (hai góc tương ứng)
=>AB//CD
Ta có:\(\Delta\)ABC=\(\Delta\)CDA(cmt)=>AD//BC
..........................................Mà AH\(\perp\)BC
\(\Rightarrow AH\perp AD\left(đpcm\right)\)
A B H C D \(\Delta ABC\)Và \(\Delta CDA\)Có
AD=BC(gt)
AC: Cạnh chung
AB=CD)gt)
=> \(\Delta ABC=\Delta CDA\left(C-C-C\right)\)
=>\(\widehat{BAC}=\widehat{DCA}\);\(\widehat{ACB}=\widehat{CAD}\)
Mà các góc này ở vị trí SLT
=>AB//CD(dpcm)
BC//AD mà \(AH\perp BC\)=>\(AH\perp AD\)(Dpcm)
a) Trên tia AD lấy điểm E sao cho AE = CB.
Ta có ^ACB = 90 độ - ^DAC; ^C'AE = 90 độ - ^DAC => ^ACB = ^C'AE. Chứng minh tương tự ^ABC = ^MAB'.
Ta thấy tam giác ACB và C'AE bằng nhau (c - g - c) => ^C'EA = ^ABC => ^C'EA = ^MAB' và C'E = AB => C'E = AB'.
Từ đó chứng minh tam giác C'ME và B'MA bằng nhau (g - c - g) => M là trung điểm B'C'.
b) Xét hai tam giác AC'B và AB'C là xong.
xet tam giac ABC va tam giac CDA co
AD=BC (gt)
BC=AD(gt)
AC là cạnh chung
=>tam giac abc = tam giac cda (c.c.c)
Ma goc BAC = goc DCA (nam o vi tri so le trong )
=>AB//CD