\(\Delta\) ABC có \(\widehat{B}=\widehat{C}\) . Tia phan...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

hình bạn tự vẽ nha

a) \(\Delta ABC\)\(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)

vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)

vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)

từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)

xét tam giác BCD và tam giác CBE có:

\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)

\(\stackrel\frown{B}=\stackrel\frown{C}\)

BC chung

\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)

b) \(\Delta BOC\)\(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)

c) xét \(\Delta AOB\)\(\Delta AOC\)

AO chung

AB=AC

\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)

\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)

\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)

\(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)

\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)

Xét \(\Delta OAK\)\(\Delta OAH\)có:

\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)

\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)

OA chung

\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)

\(\Rightarrow OH=OK\)

nếu sai ở đâu mong bạn bỏ qua cho nhaok

9 tháng 11 2019

Hình bạn tự vẽ nha!

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

\(AM\) là đường phân giác (gt).

Theo tính chất trong một tam giác cân, đường phân giác xuất phát từ đỉnh đồng thời là đường trung tuyến ứng với cạnh đáy.

=> \(AM\) là đường trung tuyến của \(\Delta ABC.\)

=> M là trung điểm của \(BC.\)

Mấy câu sau bạn tham khảo tại đây nhé: Câu hỏi của Haruno Sakura.

Chúc bạn học tốt!

10 tháng 11 2019

Bạn giải luôn câu 2,3,4 hộ mình đc ko ?

10 tháng 9 2019

b) Nếu các bạn chưa học tam giác cân thì làm như sau: VìΔBCD = ΔCBE cmt ⇒CD = BE

= Xét ΔBOE,ΔCODcó: = BE = CD cmt = cmt ⇒ΔBOE = ΔCOD g − c − g ⇒OB= OC(hai cạnh tương ứng) ( ) ^ CDB ^ BEC ^ EDO ^ ODC ( ) ^ BEO ^ CDO
10 tháng 9 2019

Hình bạn tự vẽ nha!

a) Vì \(\widehat{B}=\widehat{C}\left(gt\right)\)

\(BD\)\(CE\) là tia phân giác của \(\widehat{B}\)\(\widehat{C}\) cắt nhau tại O.

=> \(\left\{{}\begin{matrix}\widehat{DBC}=\widehat{ECB}\\\widehat{DBE}=\widehat{ECD}\end{matrix}\right.\)

Xét 2 \(\Delta\) \(BCD\)\(CBE\) có:

\(\widehat{BCD}=\widehat{CBE}\left(gt\right)\)

\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)

Cạnh BC chung

=> \(\Delta BCD=\Delta CBE\left(g-c-g\right).\)

=> \(CD=BE\) (2 cạnh tương ứng)

b) Theo câu a) ta có \(\Delta BCD=\Delta CBE.\)

=> \(\widehat{ODC}=\widehat{OEB}\) (2 góc tương ứng)

Xét 2 \(\Delta\) \(OBE\)\(OCD\) có:

\(\widehat{OEB}=\widehat{ODC}\left(cmt\right)\)

\(BE=CD\left(cmt\right)\)

\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)

=> \(\Delta OBE=\Delta OCD\left(g-c-g\right).\)

=> \(OB=OC\) (2 cạnh tương ứng)

c) Xét 2 \(\Delta\) vuông \(OBK\)\(OCH\) có:

\(\widehat{OKB}=\widehat{OHC}=90^0\left(gt\right)\)

\(OB=OC\left(cmt\right)\)

\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)

=> \(\Delta OBK=\Delta OCH\) (cạnh huyền - góc nhọn)

=> \(OK=OH\) (2 cạnh tương ứng).

Chúc bạn học tốt!

19 tháng 11 2017

a/ Vì \(\widehat{B}=\widehat{C}\)(gt)

mà BD, CE là tia p.g của \(\widehat{B},\widehat{C}\)

\(\Rightarrow\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)

Xét tam giác BCD và tam giác CBE ta có:

\(\hept{\begin{cases}\widehat{B}=\widehat{C}\\BC:canh\\\widehat{DBC}=\widehat{ECB}\left(gt\right)\end{cases}}chung\)

suy ra tam giác BCD bằng tam giác CBE ( c.g.c )

Nhớ k cho mình nhé! Thank you!!!

19 tháng 11 2017

b/ Vì \(\widehat{OBC}=\widehat{OCB}\left(cmt\right)\)

suy ra tam giác OBC cân tại O

suy ra OB = OC

Nhớ k cho mình nhé! Thank you!!!

28 tháng 11 2022

Sửa đề: Tia phân giác góc B cắt AC tại D. Tia phân giác góc C cắt AB tại E

a: Xét ΔABD và ΔACE có

góc ABD=góc ACE

AB=AC

góc A chung

Do đó: ΔABD=ΔACE
=>BD=CE

b: Xét ΔOEB và ΔODC có

góc EBO=góc DCO

EB=DC

góc OEB=góc ODC

DO đó: ΔEOB=ΔDOC

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó: ΔABO=ΔACO

=>góc BAO=góc CAO

=>AO là phân giác của tia phân giác của góc BAC

a: Xét ΔABD vuông tạiD và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đo: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đo: ΔOEB=ΔODC

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC