\(\Delta\) ABC có \(\widehat{B}\) < 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

Kẻ AF và CG cùng vuông góc với BD, CH vuông góc với AE.

Xét tam giác ABF và tam giác CAH có:

AFB=CHA=90

AB=CA (vì tam giác abc cân tại A)

ABF=CAH (gt)

=>Tam giác ABF=Tam giác CAH (ch-gn)

=>AF=CH (2 cạnh tương ứng) (1)

Xét tam giác ADF và tam giác CDG có:

AFD=CGD=90

AD=CD (vì D là trung điểm của AC)

ADF=CDG (2 góc đối đỉnh)

=>Tam giác ADF=Tam giác CDG (ch-gn)

=>AF=CG (Hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: CH=CG

Xét tam giác CEH và tam giác CEG có:

CH=CG (cmt)

CHE=CGE=90

EC cạnh chung

=>Tam giác CEH=Tam giác CEG (ch-cgv)

=>CEH=CEG (hai góc tương ứng)

Mà CEH là góc ngoài đỉnh E của tam giác AEC

      CEG là góc ngoài đỉnh E của tam giác BEC

=>CEH=ECA+EAC và CEG=EBC+ECB

=>ECA+EAC=EBC+ECB (vì CEH+CEG cmt)

=>ECA+EBA=EBC+ECB (vì DAE=ABD) (1)

Lại có: Tam giác ABC cân tại A  =>ACB=ABC

=>ECA+ECB=EBC+EBA (2)

Cộng vế theo vế đẳng thức (1) và (2), ta được:

ECA+EBA+ECA+ECB=EBC+ECB+EBC+EBA

=>2ECA+EBA+ECB=2EBC+ECB+EBA

=>2ECA=2EBC

=>ECA=EBC

1 tháng 3 2020

Bạn tự vẽ hình nha 

1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE

Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)

2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)

Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà  góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng ) 

Vậy DH=DC=DA

3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)

Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'

-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'

4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A

Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1) 

Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)

Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều 

Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)

=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm) 

Học tốt nhé 🙋‍♀️🙋‍♀️🙋‍♀️💗💗💗

a: Xét ΔABH và ΔACH có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó ΔABH=ΔACH

Suy ra: HB=HC

hay H là trung điểm của BC

b: TA có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

c: Xét ΔADB và ΔBCA có 

AD=BC

\(\widehat{DAB}=\widehat{CBA}\)

BA chung

Do đó: ΔADB=ΔBCA

Xét tứ giác ADBC có

AD//BC

AD=BC

Do đó: ADBC là hình bình hành

Suy ra: AC//BD

22 tháng 2 2018

Bài 2: Em tham khảo bài tương tự tại đây nhé.

Câu hỏi của Dang Khanh Ngoc - Toán lớp 7 - Học toán với OnlineMath

1 tháng 3 2018

Bài 1 ai lm ik cho mk tham khảo nữa

Bài 1: 

a: \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔBAC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔDBC có

HB<HC

HB là hình chiếu của DBtrên BC

HC là hình chiếu của DC trên BC

Do đó: DB<DC

=>\(\widehat{DCB}< \widehat{DBC}\)

28 tháng 1 2019

viết đúng đầu bài ra ĐƯỜNG CAO AH NHƯ VẬY H SẼ TRÙNG VỚI B