\(\Delta ABC\) có trung tuyến AM. Lấy điểm D trên cạnh AC sao cho AD =
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDC có

M là trung điểm của BC

ME//BD

Do đó: E là trung điểm của CD

=>AD=DE=CE

b: Xét ΔAME có 

D là trung điểm của AE

DI//ME

Do đó: I là trung điểm của AM

Xét ΔBAM có BI là đường trung tuyến

nen \(S_{ABI}=S_{MBI}\)

2 tháng 4 2018

easy như 1 trò đùa

Kẻ MK//BD

Xét ΔBDC có

M là trung điểm của CB

MK//BD

Do đó: K là trung điểm của CD

=>CK=KD=1/2CD=1/3AC=AD

Xét ΔAMK có

D là trung điểm của AK

DI//MK

Do đó: I là trung điểm của AM

Xét ΔBDC có MK//BD

nên MK/BD=CM/CB=1/2

Xét ΔAMK có DI//MK

nên DI/MK=1/2

=>DI=1/2MK=1/4BD

Kẻ BH vuông góc với AC

\(S_{ABC}=\dfrac{1}{2}\cdot BH\cdot AC\)

\(S_{ABD}=\dfrac{1}{2}\cdot BH\cdot AD\)

=>\(\dfrac{S_{ABC}}{S_{ABD}}=\dfrac{AC}{AD}=3\)

=>\(S_{ABD}=\dfrac{20}{3}\left(cm\right)\)

Kẻ AK vuông góc BD

\(S_{ABD}=\dfrac{1}{2}\cdot AK\cdot BD\)

\(S_{ABI}=\dfrac{1}{2}\cdot AK\cdot BI\)

=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{BD}{BI}=\dfrac{4}{3}\)

=>\(S_{ABI}=\dfrac{20}{3}:\dfrac{4}{3}=\dfrac{20}{4}=5\left(cm^2\right)\)

19 tháng 3 2019

A C D E

Xét \(\Delta ABC\) Và \(\Delta DEC\) có :

         \(\widehat{BAC}\)\(=\widehat{E\text{D}C}\) ( cùng = 900 )

            \(\widehat{C}\) là góc chung

  \(\Rightarrow\)\(\Delta ABC\) ~    \(\Delta DEC\) ( g-g )

Áp dụng định lí pi - ta - go vào \(\Delta ABC\)vuông tại A ta được :

  \(BC^2\)=  \(AB^2\)\(+\)\(AC^2\)

  \(BC^2\)=  32  +   52

  \(BC^2\)=  9  +  25

  \(BC^2\)=  34

  \(BC=\sqrt{34}\)

 Xét \(\Delta ABC\) có AD là đường phân giác \(\widehat{BAC}\)

\(\Rightarrow\frac{B\text{D}}{C\text{D}}=\frac{AB}{AC}\)\(\Rightarrow\frac{B\text{D}}{BC-B\text{D}}=\frac{3}{5}\)\(\Rightarrow\frac{B\text{D}}{\sqrt{34}-B\text{D}}=\frac{3}{5}\)

\(\Rightarrow5BD=3\sqrt{34}-3BD\)\(\Rightarrow3\sqrt{34}-3BD-5BD=0\)

\(\Rightarrow3\sqrt{34}-8BD=0\)\(\Rightarrow B\text{D}=\frac{3\sqrt{34}}{8}\)