K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDC có

M là trung điểm của BC

ME//BD

Do đó: E là trung điểm của CD

=>AD=DE=CE

b: Xét ΔAME có 

D là trung điểm của AE

DI//ME

Do đó: I là trung điểm của AM

Xét ΔBAM có BI là đường trung tuyến

nen \(S_{ABI}=S_{MBI}\)

AD/DB=AM/MB

AE/EC=AM/MC

mà MB=MC

nên AD/DB=AE/EC

=>DE//BC

Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1

=>AM/MB=AM/MC=1

=>ΔABC vuông tại A

a: Xét ΔBDC có 

M là trung điểm của CB

ME//BD

=>E là trung điểm của DC

=>AD=DE=EC

b: Xét ΔAME có

D là trung điểm của AE

DI//ME

=>I là trung điểm của AM

=>IA=IM

24 tháng 7 2018

A B C M D E N F

Nối C với E. Xét \(\Delta\)DMF có: C là trung điểm MF; E là trung điểm DM

=> CE là đường trung bình \(\Delta\)DMF => CE // DF hay CE // DN

Xét \(\Delta\)EAC: D là trung điểm AE; DN // CE , N thuộc AC => N là trung điểm AC

Trong \(\Delta\)ABC có: Trung tuyến AM, E thuộc AM (ME=1/3.AM) => E là trọng tâm \(\Delta\)ABC

Do N là trung điểm AC nên BN là trung tuyến \(\Delta\)ABC => BN  đi qua E (trọng tâm \(\Delta\)ABC)

Hay 3 điểm B;E;N thẳng hàng (đpcm). 

a: Xét ΔBDC có 

M.E lần lượt là trung điểm của CB và CD

nen ME là đường trung bình

=>ME//BD

b: Xét ΔAME có

D là trung điểm của AE

DI//ME

Do đó: I là trung điểm của AM

c: \(BD=2\cdot ME=2\cdot2\cdot ID=4ID\)

=>IB=3ID

a: Xét ΔBDC có 

M là trung điểm của BC

ME//BD

Do đó: E là trung điểm của DC

Suy ra: \(ED=EC=\dfrac{DC}{2}\)

mà \(AD=\dfrac{DC}{2}\)

nên AD=ED=EC