Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Bài hình chẳng ai phụ trách giùm mình hết :v (đặc biệt là hình nâng cao).
-Mình cũng xin lỗi vi tối mới làm đc cho bạn nhé.
-Gọi E là giao của AD và BC.
\(\widehat{BAE}=180^0-\widehat{BAD}=\widehat{BCD}\)
\(\Rightarrow\)△ABE∼△CDE (g-g).
\(\Rightarrow\dfrac{AE}{CE}=\dfrac{BE}{DE}\Rightarrow\dfrac{AE}{BE}=\dfrac{CE}{DE}\Rightarrow\)△EAC∼△EBD (c-g-c).
\(\Rightarrow\widehat{ICB}=\widehat{IDA}\Rightarrow\)△IBC∼△IAD (g-g)
\(\Rightarrow\dfrac{IB}{IA}=\dfrac{IC}{ID}\Rightarrow\dfrac{IB}{IC}=\dfrac{IA}{ID}\Rightarrow\)△AIB∼△DIC (c-g-c)
\(\Rightarrow\widehat{IAM}=\widehat{IDN};\dfrac{IA}{ID}=\dfrac{AB}{DC}\Rightarrow\dfrac{IA}{ID}=\dfrac{MA}{ND}\Rightarrow\dfrac{IA}{MA}=\dfrac{ID}{ND}\)
\(\Rightarrow\)△AIM∼△DIN (c-g-c) \(\Rightarrow\widehat{AIM}=\widehat{DIN}\)
Em cám ơn thầy nhiều lắm ạ!
Em đã hiểu bài rồi thầy ạ! Trân trọng sự giúp đỡ của thầy ạ!
a) \(\widehat{BDM}=180^0-\widehat{BMD}-\widehat{DBM}=180^0-\widehat{BMD}-\widehat{DME}=\widehat{CME}\)
\(\Rightarrow\)△BMD∼△CEM (g-g)
b) \(\Rightarrow\dfrac{BD}{CM}=\dfrac{MD}{EM}\Rightarrow\dfrac{BD}{BM}=\dfrac{MD}{EM}\)
\(\Rightarrow\)△BMD∼△MED (c-g-c).
\(\Rightarrow\widehat{BDM}=\widehat{MDE}\Rightarrow\)DM là tia p/g góc BDE.
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{A}\) chung
Do đó: ΔAEB∼ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
Do đó: ΔAEF∼ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
\(P=\dfrac{a^2\left(b+c\right)+b^2\left(a+c\right)}{abc}=\dfrac{c\left(a^2+b^2\right)+ab\left(a+b\right)}{abc}\)
\(P=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{\sqrt{a^2+b^2}}\ge\dfrac{a^2+b^2}{ab}+2\sqrt{\dfrac{ab}{a^2+b^2}}\)
Đặt \(\sqrt{\dfrac{a^2+b^2}{ab}}=x\ge\sqrt{2}\)
\(P=x^2+\dfrac{2}{x}=\left(1-\dfrac{1}{2\sqrt{2}}\right)x^2+\dfrac{x^2}{2\sqrt{2}}+\dfrac{1}{x}+\dfrac{1}{x}\)
\(P\ge\left(1-\dfrac{1}{2\sqrt{2}}\right).2+3\sqrt[3]{\dfrac{x^2}{2\sqrt{2}x^2}}=2+\sqrt{2}\)
\(P_{min}=2+\sqrt{2}\) khi \(x=\sqrt{2}\Rightarrow a=b\) hay tam giác vuông cân
Qua C kẻ đường thẳng song với PQ, cắt AB tại N, cắt AH tại K
HP=HQ
=>KN=KC
=>KM là đường trung bình của ΔCBN
=>KM//NB
=>KM vuông góc CH
M là trực tâm của ΔCHK
=>HM vuông góc nC
=>HM vuông góc PQ