Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C M K H G I
a) Xét hai tam giác MHB và MKC có:
MB = MC (gt)
Góc HMB = góc KMC (đối đỉnh)
MH = MK (gt)
Vậy: tam giác MHB = tam giác MKC (c - g - c)
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> Tam giác MAB cân tại M
=> MH là đường cao đồng thời là đường trung tuyến
hay HB = HA
=> CH là đường trung tuyến ứng với cạnh AB
Hai đường trung tuyến AM và CH cắt nhau tại G
=> G là trọng tâm của tam giác ABC
Mà BI đi qua trọng tâm G (G thuộc BI)
Do đó BI là đường trung tuyến còn lại
hay I là trung điểm của AC (đpcm).
A B C E M
a) Xét hai tam giác vuông ABM và ECM có:
MB = MC (gt)
MA = ME (gt)
Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)
b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)
Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)
Mà \(\widehat{ABM=90^o}\)
Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB
c) Vì \(\Delta ABC\) vuông tại B
nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))
\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà AB = CE (\(\Delta ABM=\Delta ECM\))
Do đó: AC > CE
d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))
Mà hai góc này ở vị trí so le trong
Vậy: BE // AC.
A B C E D
a) Vì \(\Delta\)ABC cân tại A
nên \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (1)
Do AD = AE nên \(\Delta\)ADE cân tại A
=> \(\widehat{AED}\) = \(\widehat{ADE}\)
\(\widehat{AED}\) + \(\widehat{ADE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AED}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AED}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABC}\) = \(\widehat{AED}\)
mà 2 góc này ở vị trí đồng vị nên DE // BC.
b) Ta có: AE + EB = AB
AD + DC = AC
mà AE = AD; AB = AC (\(\Delta\)ABC cân tại A)
=> EB = DC
Lại có: \(\widehat{ABC}\) = \(\widehat{ACB}\)
A B C M D 1 2
Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)
Giải:
a, ΔABD = ΔACD:
Xét ΔABM và ΔACM có:
+ AB = AC (ΔABC cân tại A)
+ AM là cạnh chung.
+ BM = CM (trung tuyến AM)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
Xét ΔABD và ΔACD có:
+ AB = AC (ΔABC cân tại A)
+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)
+ AD là cạnh chung.
=> ΔABD = ΔACD (c - g - c)
b, ΔBDC cân:
Ta có: ΔABD = ΔACD (câu a)
=> BD = CD (2 cạnh tương ứng)
=> ΔBDC cân tại D.
A B C D M
a) ΔABD=ΔACD
Xét ΔABM và ΔACM ta có:
AB=AC (ΔABC cân tại A)
AM chung
BM=BC (gt)
\(\Rightarrow\)ΔABM = ΔACM (c.c.c)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
Xét ΔABD và ΔACD ta có:
AB=AC (ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\) (cmt)
AM cạnh chung
\(\Rightarrow\) ΔABD = ΔACD (c.g.c)
b) ΔBDC cân
Vì ΔABD = ΔACD ( theo câu a)
\(\Rightarrow\)BD=DC (2 cạnh tương ứng)
\(\Rightarrow\)ΔBDC cân tại D (đpcm)
Ta kẻ dài IK sao cho IK =KH .Nối H với C .Nối C với I
Xét tam giác AIK và tam giác HKC có
Ak =KC ( K là tđ AC )
Ik =KH (Do kéo dài IK )
góc AKI =góc HKC ( Đối đỉnh )
=> tam giác AKI =tam giác CHK ( c.g.c )
-> góc AIK = góc CHK ( t ứ )
=> AM // DC
=> AB // DC
=> góc BIC = góc HCI ( SLT )
Vì DC =AM ( do tam giác AIK = tam giác HCK )
mà AM = MB
=> MB =DC
Xét tam giác BIC và tam giác HIC có :
IC chung
BIC = HCI (cmt)
BI =CH ( cmt)
=> tam giác BIC = tam giác HCI (C.G.c)
=> góc IBC = góc IHC ( tg uwsg )
=> IH // BC =>IK // BC ( Đpcm)
Vì IH = BC ( do tam giác BIC = tam giác HCI )
mà IK = \(\dfrac{1}{2}\) IH
=> IK =\(\dfrac{1}{2}\) BC ( ĐPCm)
((( Học TỐt Nhé )))
Ta có hình vẽ:
A B C M N
a/ Xét tam giác ABM và tam giác CNM có:
AM = MC (GT)
góc AMB = góc CMN (đđ)
BM = MN (GT)
=> tam giác ABM = tam giác CNM
=> góc A = góc NCM = 900
Vậy CN vuông góc AC (đpcm)
Ta có: tam giác ABM = tam giác CNM
=> AB = CN
b/ Xét tam giác ANM và tam giác BCM có:
AM = MC (GT)
góc AMN = góc BMC (đđ)
BM = MN (GT)
=> tam giác ANM = tam giác BCM
=> AN = BC
Ta có: tam giác ANM = tam giác BCM
=> góc ANM = góc MBC
Mà hai góc này đang ở vị trí slt
=> AN // BC (đpcm)
a) Xét \(\Delta BAM\) và \(\Delta NCM\) có:
BM=MN ( GT)
\(\widehat{BMA}\)=\(\widehat{NMC}\) ( Đối đỉnh)
AM=CM( Do M là trung điểm của AC)
=> \(\Delta BAM\)=\(\Delta NCM\)( c-g-c)
Khi đó: \(\widehat{NCM}\)=\(\widehat{BAM}\)= 90 độ
=> CN\(\perp\)AC (1)
Ta lại có: CN=AB( Hai cạnh tương ứng) (2)
Từ (1) và (2)=> ĐPCM