\(\Delta ABC\) có các đường cao BE, CF cắt nhau tại H.

C/m: a) AF.AB=AE.AC

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

A B C H E F

d, Ta có : \(AF.AB=AE.AC\) ( theo câu a)

\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\)

Xét ΔABC và ΔAEF ,có :

\(\widehat{A}\) : góc chung

\(\dfrac{AB}{AE}=\dfrac{AC}{AF}\) ( c/m t)

⇒ ΔABC ∼ ΔAEF ( cgc )

14 tháng 3 2018

cho hộ mk cái hình

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

17 tháng 4 2019

Ôn tập cuối năm phần hình họcÔn tập cuối năm phần hình học=> Đpcm

19 tháng 4 2019

Thank bn nha ❤❤

29 tháng 3 2018

a)   Xét   \(\Delta BDA\)và    \(\Delta BFC\) có:

\(\widehat{BDA}=\widehat{BFC}=90^0\)

\(\widehat{ABC}\) chung

suy ra:   \(\Delta BDA~\Delta BFC\)

\(\Rightarrow\)\(\frac{BD}{BF}=\frac{BA}{BC}\)

\(\Rightarrow\)\(BD.BC=BA.BF\)

8 tháng 4 2018

A B C E F D H

b.

Vẽ đường cao AD cũng cắt BE và CF

Xét tam giác BDH và tam giác BEC có:

góc D = E = 90o

góc B chung

Do đó: tam giác BDH~BEC (g.g)

=> \(\dfrac{BD}{BE}=\dfrac{BH}{BC}\Rightarrow BH.BE=BD.BC\) (1)

Xét tam giác CHD và tam giác CBF có:

góc D = F = 90o

góc C chung

Do đó: tam giác CHD~CBF (g.g)

=> \(\dfrac{CH}{CB}=\dfrac{CD}{CF}\Rightarrow CH.CF=CD.BC\) (2)

Từ (1) và (2) cộng vế theo vế ta được:

\(BH.BE+CH.CF=BD.BC+CD.BC\)

\(\Rightarrow BH.BE+CH.CF=BC\left(BD+CD\right)\)

\(\Rightarrow BH.BE+CH.CF=BC^2\)

8 tháng 4 2018

A B C F E H

a xét △ AEB và △AFC có

\(\widehat{E}=\widehat{F}=90^0\)

\(\widehat{A}CHUNG\)

=> △ AEB ∼ △AFC (g.g)

=> \(\dfrac{AE}{FA}=\dfrac{AB}{AC}\Rightarrow\dfrac{AE}{AB}=\dfrac{FA}{AC}\)

xét △ AEF và △ ABC có

\(\widehat{A}CHUNG\)

\(\dfrac{AE}{AB}=\dfrac{FA}{AC}\)

=> △ AEF ∼ △ ABC (c.g.c )(đpcm)

6 tháng 5 2018

a) Có CF⊥AB, AD⊥BC => góc ADB = góc AFH = 90o
Xét △AFH và △ADB có
góc ADB = góc AFH = 90o (cmt)
góc BAD chung
Do đó △AFH đồng dạng với △ADB (g.g)
b)Vì △AFH đồng dạng với △ADB (cmt)
nên ​\(\dfrac{AF}{AD}\) = \(\dfrac{AH}{AB}\) <=> AF.AB = AD.AH (1)
Có BE⊥AC => góc AEB = góc ADC = 90o
Xét △AEH và △ADC có
góc AEB = góc ADC = 90o
góc DAC chung
Do đó △AEH đồng dạng với △ADC (g.g)
=> \(\dfrac{AE}{AD}\) = ​\(\dfrac{AH}{AC}\) <=> AE.AC = AD.AH (2)
Từ (1) và (2) suy ra AF.AB = AE.AC
c) Xét △AFD và △AHB có
góc BAD chung; ​\(\dfrac{AF}{AD}\) = \(\dfrac{AH}{AB}\) (cmt)
Do đó △AFD đồng dạng với △AHB(g.g)
=> góc ABH = góc ADF
=> góc ABE = góc ADF
d)△AFC vuông tại F có góc FAC = 60o
nên △​AFC là nửa △​đều
=> AF = \(\dfrac{1}{2}\)AC <=> AC = 2AF (3)
Xét △AFE và △ACB có
góc FAE chung; \(\dfrac{AF}{AC}\) = \(\dfrac{AE}{AB}\) (vì AF.AB = AE.AC)
Do đó △AFE đồng dạng với △ACB (c.g.c)
=>\(\dfrac{S_{AFE}}{S_{ACB}}\) = ​(\(\dfrac{AF}{AC}\))2 (4)
Thay (3) vào (4) ta được \(\dfrac{S_{AFE}}{S_{ACB}}\) = ​(\(\dfrac{AF}{2AF}\))2 = ​(\(\dfrac{1}{2}\))2 = \(\dfrac{1}{4}\)
<=> SAFE = SACB.\(\dfrac{1}{4}\) = \(\dfrac{1}{4}\) (cm2) (vì SACB = 1)
Do đó SBCEF = SACB - SAFE = 1-\(\dfrac{1}{4}\) = \(\dfrac{3}{4}\)(cm2)

14 tháng 7 2019

https://hoc24.vn/hoi-dap/question/585684.html